Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của 원회으Won Hoe Eu - Toán lớp 8 | Học trực tuyến
Hơi tắt 1 xíu ^.^
Áp dụng bđt Cauchy-schwarz dạng engel ta có:
1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)
Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)
2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)
Dấu "=" \(\Leftrightarrow a=b=c\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{a+1}+\frac{2b}{b+1}+\frac{3c}{c+1}\leq 1(*)\)
\((*)\Rightarrow \frac{1}{a+1}=1-\frac{a}{a+1}\geq \frac{2b}{b+1}+\frac{3c}{c+1}=\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{b^2c^3}{(b+1)^2(c+1)^3}}(1)\)
\((*)\Rightarrow \frac{1}{b+1}=1-\frac{b}{b+1}\geq \frac{a}{a+1}+\frac{b}{b+1}+\frac{3c}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{abc^3}{(a+1)(b+1)(c+1)^3}}(2)\)
\((*)\Rightarrow \frac{1}{c+1}=1-\frac{c}{c+1}\geq \frac{a}{a+1}+\frac{2b}{b+1}+\frac{2c}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{ab^2c^2}{(a+1)(b+1)^2(c+1)^2}}(3)\)
Lấy \((1).(2)^2.(3)^3\) rồi rút gọn ta suy ra \(ab^2c^3\leq \frac{1}{5^6}\)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{5}$
Lời giải:
\(\text{BĐT}\Leftrightarrow \frac{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}}{abc}\geq\frac{ab+bc+ac}{abc}\)
\(\Leftrightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) \((\star)\)
Điều này hiển nhiên đúng vì theo Cauchy-SChwarz kết hợp AM-GM:
\(\text{VT}_{\star}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\geq \frac{(a^2+b^2+c^2)^2}{ab+bc+ac}\geq ab+bc+ac\)
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c$
Theo bđt Mincopxki:
\(VT\ge\sqrt{3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2+\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^2}\ge\sqrt{3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2+\left[\frac{9}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}\right]^2}\)
Sử dụng bđt AM-GM ta cm được:\(\sqrt{a}+\sqrt{b}+\sqrt{c}\le3\)
bđt cần cm\(\Leftrightarrow3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2+\frac{81}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}\ge36\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2+\frac{27}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}\ge12\)
Đặt \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=x\rightarrow0< x\le9\)
Ta cần CM: \(x+\frac{27}{x}\ge12\)
\(VT\ge x+\frac{81}{x}-\frac{54}{x}\ge2\sqrt{81}-\frac{54}{9}=12\left(đpcm\right)\)
Dấu bằng xảy ra khi a=b=c=1
\(P=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{2ac+3bc}\)
\(P\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự: \(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c}\) ; \(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)
Cộng vế với vế ta có đpcm