Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Để \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\) thì phải có 1 số nhỏ hơn 0 hoặc 3 số nhỏ hơn 0
TH1 : có 1 số nhỏ hơn 0
Vì \(x^2-1>x^2-4>x^2-7>x^2-10\)
Nên \(\hept{\begin{cases}x^2-1;x^2-4;x^2-7>0\\x^2-10< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-7>0\\x^2-10< 0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2>7\\x^2< 10\end{cases}\Leftrightarrow7< x^2< 10\Rightarrow x^2=9\Rightarrow x=\pm3}\)
TH2: 3 số nhỏ hơn 0
Vì \(x^2-1>x^2-4>x^2-7>x^2-10\)
Nên \(\hept{\begin{cases}x^2-1>0\\x^2-4;x^2-7;x^2-10< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\Rightarrow1< x^2< 4}\) (loại vì x là số nguyên)
Vậy \(x=\pm3\)
2) \(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\)
\(=\left|x-a\right|+\left|x-d\right|+\left|x-c\right|+\left|x-b\right|\)
\(=\left|x-a\right|+\left|d-x\right|+\left|x-c\right|+\left|b-x\right|\)
\(\ge\left|x-a+d-x\right|+\left|x-c+b-x\right|=\left|d-a\right|+\left|b-c\right|=c+d-a-b\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-a\right)\left(d-x\right)\ge0\\\left(x-c\right)\left(b-x\right)\ge0\end{cases}\Rightarrow b\le x\le c}\)
Vậy GTNN của A là \(c+d-a-b\) tại \(b\le x\le c\)
Với \(a< b< c< d\) thì
\(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|< \left|x-a\right|+\left|x-a\right|+\left|x-a\right|+\left|x-a\right|=4\left|x-a\right|\)
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Ta có: A ≥ |x-a+x-b|+|x-c+x-d|= |2x-a-b|+|c+d-2x| ≥ |2x-a-b-2x+c+d| = |c+d-a-b|
Dấu " = " xảy ra khi x-a và x-b cùng dấu hay x≤ a hoặc b ≤ x
x-c và x-b cùng dấu hay x≤ c hoặc d ≤ x
2x-a-b và c+d-2x cùng dấu hay x+b≤ 2x ≤ c+d
vậy GTNN của A=c+d-a-b khi b ≤ x ≤ c
là 10. tụ làm nhé
Tại sao mk lm ko ra 10 nhỉ. bn giúp mk đi