K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

\(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}\Rightarrow}\frac{a}{b}=\frac{b}{c}=\frac{c}{d}}\)

=>\(\frac{a^3}{b^3}=\frac{2018b^3}{2018c^3}=\frac{2019c^3}{2019d^3}=\frac{a^3-2018b^3-2019c^3}{b^3-2018c^3-2019d^3}\left(1\right)\)

Mà \(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)

Từ (1) và (2) => đpcm

2.

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

\(\Rightarrow a=\frac{2b}{2}=b;b=\frac{2c}{2}=c;c=\frac{2d}{2}=d;d=\frac{2a}{2}=a\)

\(\Rightarrow a=b=c=d\)

Ta có : \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)

\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)

\(=\frac{4a}{2a}=2\)

3.

\(\left(x-1\right)\left(x-3\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-1< 0\\x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1>0\\x-3< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 1\\x>3\end{cases}}\)( loại ) hoặc \(\hept{\begin{cases}x>1\\x< 3\end{cases}}\)

Vậy \(1< x< 3\)

Đặt \(A=\frac{1}{4\times9}+\frac{1}{9\times14}+\frac{1}{14\times19}+...+\frac{1}{44\times49}\)

Ta có : \(5\times A=\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{44\times49}=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}=\frac{1}{4}-\frac{1}{49}\)

\(=\frac{49}{196}-\frac{4}{196}=\frac{45}{196}\)

\(\Rightarrow A=\frac{9}{196}\)

Đặt \(B=1-3-5-7-...-49=1-\left(3+5+...+49\right)\)

Đặt \(C=3+5+...+49\) ( khoảng cách là 2 )

Số số hạng là : \(\left(49-3\right):2+1=24\)

Tổng C là : \(\left(49+3\right)\times24:2=624\)

\(\Rightarrow B=1-264=-623\)

Vậy \(A=\frac{9}{196}\times\frac{-623}{89}=\frac{-9}{28}\)

Dòng cuối cùng mình không chắc là đúng nhé !

20 tháng 10 2018

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

                  \(\Rightarrow\frac{2018a}{2018c}=\frac{2019b}{2019d}\)

Áp dụng t/c DTSBN : \(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}=\frac{2018a+2019b}{2018c+2019d}\)

                  Cái này đến đây là đề sai nhé ! Đề phải cho là C/m cái (2018a-2019b).(2018c+2019d) = (2018a-2019b)(2018c+2019d) mới đúng

7 tháng 8 2017

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}\)

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2017a-2018b}{2017c-2018d}=\frac{2018a+2019b}{2018c+2019d}\)

<=>\(\left(2017a-2018b\right)\left(2018c+2019d\right)=\left(2018a+2019b\right)\left(2017c-2018d\right)\)

<=>\(\frac{2017a-2018b}{2018a+2019b}=\frac{2017c-2017d}{2018x+2019d}\)(đpcm)

8 tháng 8 2017

nhật gà

4 tháng 12 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{2018a^2}{2018c^2}=\frac{2019b^2}{2019d^2}=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018a^2-2019b^2}{2018c^2-2019d^2}\)

\(\Rightarrow\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\left(dpcm\right)\)

27 tháng 12 2019

Bạn tham khảo nè

https://olm.vn/hoi-dap/detail/221248297106.html

Học tốt

9 tháng 5 2019

ADTCSTSBN , ta được :

\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)

\(\Rightarrow a+b=a+b+c\)\(\Rightarrow c=0\)

\(P=\frac{a+b-2019.0}{a+b+2018.0}=\frac{a+b}{a+b}=1\)

Vậy P = 1

9 tháng 5 2019

ta co

3/a+b=3/b+c=3/c+a

=>1:3/a+b=1:2/b+c=1:1/c+a

=>a+b/3=b+c/2=c+a/1

ap dung DTSBN, ta có

a+b/3=b+c/2=c+a/1+(a+b)+(b+c)+(c+a)/3+2+1=2a+2b+2c/6=2.(a+b+c)/6=a+b+c/3

vi a+b/3=a+b+c/3

=>a+b=a+b+c

=>c=0

=>p=a+b-2019.0/a+b+2018.0

=>p=a+b/a+b

=>p=1

KL

5 tháng 12 2019

Đặt bằng k nhé

5 tháng 12 2019

Dăm ba mấy bài đặt k:v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:

\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018b^2k^2+2019b^2}{2018b^2k^2-2019b^2}=\frac{b^2\left(2018k^2+2019\right)}{b^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

\(\frac{2018c^2+2019d^2}{2018c^2-2019d^2}=\frac{2018d^2k^2+2019d^2}{2018d^2k^2-2019d^2}=\frac{d^2\left(2018k^2+2019\right)}{d^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

Từ đó \(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)