K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

2b = a+ c(1)

2bd = bc + bd

<=> ( a+c )d= bc+ cd

<=>  ad +cd= bc+ cd

<=> ad = bc

<=>  a/b = c/d (đpcm)

26 tháng 7 2019

Bạn ơi bạn vô câu hỏi tương tự xem nhé

Học tốt

26 tháng 7 2019

Tham khảo nhé!

>>https://olm.vn/hoi-dap/detail/80507618602.html

13 tháng 5 2017

Từ c(b+d)=2bd=>bc+cd=2bd

Ta lại có             a+c =2b

Lấy vế chia vế được :\(\frac{bc+cd}{a+c}=\frac{2bd}{2b}=\)\(d\)

=>bc+cd=ad+cd=>bc=ad=>\(\frac{a}{b}=\frac{c}{d}\)

+ , \(\frac{a}{b}=\frac{c}{d}\)\(\frac{a+c}{b+d}\)=> \(\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)\(\frac{a^8}{b^8}\) (1)

\(\frac{a}{b}=\frac{c}{d}\)=> \(\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8\)<=>\(\frac{a^8}{b^8}=\frac{c^8}{d^8}\)=\(\frac{a^8+c^8}{b^8+d^8}\) (2)

Từ (1) và (2) ta suy ra : \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\) ( đpcm)

2 tháng 10 2016

2bd=c(b+d)

<=>(a+c)d=bc+cd

<=>ad+cd=bc+cd

<=>ad=bc

<=>\(\frac{a}{b}=\frac{c}{d}\)

<=>\(\frac{a}{c}=\frac{b}{d}\) <=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)<=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

2 tháng 1 2016

\(b=\frac{a+c}{2}\Rightarrow2b=a+c\Rightarrow2bd=d\left(a+c\right)=ad+dc\)  (1)

\(c=\frac{2bd}{b+d}\Rightarrow2bd=c\left(b+d\right)=cb+cd\) (2)

Từ (1) và (2) => \(ad+dc=cb+cd\)                   \(\left(=abd\right)\)

=> \(ad+cd-cd=cb+cd-cd\)

=> \(ad=cb\)

=> \(\frac{a}{b}=\frac{c}{d}\)

vậy 4 số a, b, c, d lập đc 1 tỉ lệ thức

21 tháng 8 2021

Ta có b=\(\dfrac{a+c}{2}\)⇒2b=a+c⇒2bd=d(a+c)=ad+dc(1)

          c=\(\dfrac{2bd}{b+d}\)⇒2bd=c(b+d)=cb+cd(2)

Từ (1) và (2)⇒ad+dc=cb+cd(=2bd)

⇒ad+cd-cd=cb+cd-cd

⇒ad=cb

7 tháng 1 2018

b, Có: a/b < c/d => ad < bc

 Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0

=> a.(b+d) < b.(a+c)

=> a/b < a+c/b+d

c, Đề phải là cho a+b+c = 2016 chứ bạn

Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a

Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0

=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1

Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1

=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2

=> 1 < A < 2

=> A ko phải là số tự nhiên

Tk mk nha

7 tháng 1 2018

a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.

TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)

7 tháng 4 2017

Thay \(a+b+c\) vào \(A\) ta được:

\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)

\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)

Ta có:

\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng vế với vế ta được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow A< 2\left(1\right)\)

Lại có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng vế với vế ta lại được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow A>1\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)

Vậy \(A\) không phải là số nguyên (Đpcm)

7 tháng 4 2017

cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui 

Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\) 

suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)

=> A > 1