Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi biểu thức đã cho là $A$
Với mọi $a,b,c,d\in\mathbb{N}^*$ ta có:
$\frac{a}{a+b+c}> \frac{a}{a+b+c+d}$
$\frac{b}{b+c+d}>\frac{b}{a+b+c+d}$
$\frac{c}{c+d+a}> \frac{c}{a+b+c+d}$
$\frac{d}{d+a+b}>\frac{d}{a+b+c+d}$
Cộng theo vế:
$D> \frac{a+b+c+d}{a+b+c+d}$ hay $D>1(*)$
Mặt khác:
Xét $\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0$ với mọi $a,b,c,d>0$
$\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}$
Tương tự:
$\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}$
$\frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}$
$\frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}$
Cộng theo vế:
$A< \frac{2(a+b+c+d)}{a+b+c+d}$ hay $A< 2(**)$
Từ $(*); (**)\Rightarrow 1< A< 2$ nên $A$ không phải số tự nhiên.
a) Vì OD là phân giác AOB
=> AOC = BOC = \(\frac{50}{2}\)= 25°
Mà OE là tia đối của OC
=> COB + EOB = 180° ( kề bù)
=> EOB = 180° - 25° = 155°
B) Ta có :
DOC = COB + BOD
=> BOD = DOC - COB
=> BOD = 90° - 25°
=> BOD = 65°
Mà EOD + DOB = 155°(cmt)
=> EOD = 155° - 65° =90°
=> OD không thể vuông góc với BOE
Hình như đề thiếu bạn ơi