Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy ta có:
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)
Tương tự ta cũng có:
\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)
\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)
\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)
Cộng theo vế các BĐT trên, ta được:
\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)
Dấu "=" xảy ra.....
Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))
\(VT=a^2+b^2+c^2+d^2-2\left(a+c\right)\left(b+d\right)\)
\(VT\ge\frac{1}{4}\left(a+b+c+d\right)^2-\frac{1}{2}\left(a+b+c+d\right)^2=-\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
3 số thực dương nhé.
Áp dụng bất đẳng thức Cauchy Schwarz dạng Engel có :
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{\left(a^2+2bc\right)+\left(b^2+2ca\right)+\left(c^2+2ab\right)}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{1}{a^2+2bc}=\frac{1}{b^2+2ca}=\frac{1}{c^2+2ab}\)và \(a+b+c=1\)
\(\Leftrightarrow a^2+2bc=b^2+2ca=c^2+2ab\)
Mong có ai giúp mình từ đẳng thức trên giải ra a=b=c.
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
Bên dưới có giải thích chi tiết rồi đó em:
Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh a2+b2+c2+d2-2ab-2bc-2cd-2da\(\ge\)- \(\frac{1}{4}\) - Hoc24