Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d= d* 1
= d* (af- be)
= daf- dbe
= daf- bcf+ bcf- dbe
= f (ad- bc)+b (cf- de)
Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1
=> f(ad- be)+ b(cf- de) >= f + b
<=> d >= b+f (đpcm)
Lời giải:
Với $a,b,c,d,e,f\in\mathbb{Z}^+$ ta có:
$\frac{a}{b}>\frac{c}{d}\Rightarrow ad>bc\Leftrightarrow ad-bc>0$
Mà $ad,bc$ đều nguyên nên từ đây suy ra $ad-bc\geq 1(*)$
Tương tự:
$\frac{c}{d}>\frac{e}{f}\Rightarrow cf-ed\geq 1(**)$
Từ $(*); (**)$ suy ra:
$d=d(af-be)=daf-dbe=(daf-bcf)+(bcf-dbe)$
$=f(ad-bc)+b(cf-ed)\geq f.1+b.1$
Hay $d\geq b+f$ (đpcm)
Ta có: \(\dfrac{a^4}{b^4}=\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}\)
\(=\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{d}\cdot\dfrac{e}{f}\)
\(=\dfrac{a}{f}\)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=k\Rightarrow a=bk;b=ck;c=dk;d=ek\)
\(\Rightarrow a=bk=ck^2=dk^3=ek^4;b=ek^3\)
\(\Rightarrow\dfrac{a}{e}=\dfrac{ek^4}{e}=k^4\left(1\right)\)
Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(2\right)\)
Lại có \(\dfrac{a^4}{b^4}=\left(\dfrac{a}{b}\right)^4=\left(\dfrac{ek^4}{ek^3}\right)^4=k^4\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\RightarrowĐpcm\)
mình sửa lại đề chút
\(af-be=1\) nha