K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

Đặt vế trái BĐT là P

Ta có:

\(\left(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}\right)\left(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow P.\left(2ab+2bc+2ca\right)\ge1\)

\(\Rightarrow P\ge\dfrac{1}{2\left(ab+bc+ca\right)}\ge\dfrac{1}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

9 tháng 6 2021

a) Để biểu thức có nghĩa thì \(\dfrac{-a}{3}\ge0\Rightarrow a\le0\)

b) Để biểu thức có nghĩa thì \(\dfrac{1}{a^2}\ge0\) (luôn đúng)

c) Để biểu thức có nghĩa thì \(\dfrac{\left(1-a\right)^3}{a^2}\ge0\Rightarrow\left\{{}\begin{matrix}\left(1-a\right)^3\ge0\\a\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\a\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a\le1\\a\ne0\end{matrix}\right.\)

d) Để biểu thức có nghĩa thì \(\dfrac{a^2+1}{1-2a}\ge0\Rightarrow1-2a>0\Rightarrow a< \dfrac{1}{2}\)

e) Để biểu thức có nghĩa thì \(a^2-1\ge0\Rightarrow a^2\ge1\Rightarrow\left|a\right|\ge1\)

f) Để biểu thức có nghĩa thì \(\Rightarrow\dfrac{2a-1}{2-a}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2a-1\ge0\\2-a>0\end{matrix}\right.\\\left\{{}\begin{matrix}2a-1\le0\\2-a< 0\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a\ge\dfrac{1}{2}\\a< 2\end{matrix}\right.\\\left\{{}\begin{matrix}a\le\dfrac{1}{2}\\a>2\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow\dfrac{1}{2}\le a< 2\)

NV
27 tháng 7 2021

BĐT mà ghi thiếu điều kiện thì chết rồi, vì số thực, số dương, số không âm nó hoạt động khác nhau lắm 

Bunhiacopxki: \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(a^2+b^2\right)^4\)

\(\Rightarrow ac+bd\le\left(a^2+b^2\right)^2\)

Do đó:

\(\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^4}{ac}+\dfrac{b^4}{bd}\ge\dfrac{\left(a^2+b^2\right)^2}{ac+bd}\ge\dfrac{\left(a^2+b^2\right)^2}{\left(a^2+b^2\right)^2}=1\) (đpcm)

NV
27 tháng 7 2021

Đề bài sai: phản ví dụ:

\(a=b=-1\) ; \(c=d=2\)

Khi đó: \(c^2+d^2=\left(a^2+b^2\right)^3\) nhưng \(\dfrac{a^3}{c}+\dfrac{b^3}{d}=-1< 1\)

15 tháng 10 2023

 

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;\dfrac{25}{9};\dfrac{9}{4}\right\}\end{matrix}\right.\)

a: \(C=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\dfrac{5}{2\sqrt{x}-3}\right):\left(3-\dfrac{2}{\sqrt{x}-1}\right)\)

\(=\dfrac{2\sqrt{x}-5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}:\dfrac{3\sqrt{x}-3-2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=-\dfrac{1}{2\sqrt{x}-3}\)

b: \(x=\dfrac{2}{2-\sqrt{3}}=2\left(2+\sqrt{3}\right)=4+2\sqrt{3}\)

Khi \(x=4+2\sqrt{3}\) thì \(C=-\dfrac{1}{2\left(\sqrt{3}+1\right)-3}=\dfrac{-1}{2\sqrt{3}-1}=\dfrac{-2\sqrt{3}-1}{11}\)

c: C=-1

=>\(2\sqrt{x}-3=1\)

=>\(\sqrt{x}=2\)

=>x=4(nhận)

d: C>0

=>\(2\sqrt{x}-3< 0\)

=>\(\sqrt{x}< \dfrac{3}{2}\)

=>\(0< =x< \dfrac{9}{4}\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< =x< \dfrac{9}{4}\\x< >1\end{matrix}\right.\)

 

25 tháng 8 2018

\(a,\sqrt{2x-1}\)

\(\sqrt{2x-1}\) có nghĩa khi:

\(2x-1\ge0\\ \Leftrightarrow2x\ge1\\ \Leftrightarrow x\ge\dfrac{1}{2}\)

\(b,\sqrt{\dfrac{3}{x^{ }+1}}\)

\(\sqrt{\dfrac{3}{x+1}}\) có nghĩa khi:

\(x+1\ge0\\ \Leftrightarrow x\ge-1\)

\(c,\sqrt{3x^2}\)

\(\forall x\in Rvì3x^2\ge0\)

\(d,\sqrt{\dfrac{3}{x^2}}\\ \forall x\in Rvìx^2\ge0\)

\(e,\sqrt{\dfrac{-1}{x^2+2}}\)

Không có nghĩa \(\forall x\in R\)

\(f,\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\)

\(\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\) có nghĩa khi:

\(\dfrac{2}{3}x-\dfrac{1}{5}\ge0\\ \)

\(\Leftrightarrow\)\(\dfrac{2}{3}x\ge\dfrac{1}{5}\\ \)

\(x\ge\dfrac{1}{10}\)

NV
2 tháng 7 2021

a.

\(A=x^2+\dfrac{2021}{x}=x^2+\dfrac{2021}{2x}+\dfrac{2021}{2x}\ge3\sqrt[3]{\dfrac{2021^2}{4x^2}}=3\sqrt[3]{\dfrac{2021^2}{4}}\)

Dấu "=" xảy ra khi \(x=\sqrt[3]{\dfrac{2021}{3}}\)

b.

\(B=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)

Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)

c.

\(C=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{\dfrac{16x^3}{x^3}}=8\)

\(A_{min}=8\) khi \(x=2\)

NV
2 tháng 7 2021

d.

\(D=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}.x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=2\)

e.

\(E=\dfrac{9\left(x-2\right)+18}{2-x}+\dfrac{2}{x}=2\left(\dfrac{1}{x}+\dfrac{9}{2-x}\right)-9\ge\dfrac{2.\left(1+3\right)^2}{x+2-x}-9=7\)

\(E_{min}=7\) khi \(x=\dfrac{1}{5}\)

f.

\(F=\dfrac{3}{1-x}+\dfrac{4}{x}\ge\dfrac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)

Dấu "=" xảy ra khi \(x=4-2\sqrt{3}\)

11 tháng 4 2023

È là EF nha mng

 

loading...  loading...  loading...  loading...  loading...  loading...