Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(\Leftrightarrow ac+ad+bc+bd\ge ac+2\sqrt{acbd}+bd\)
\(\Leftrightarrow ad-2\sqrt{adbc}+bc\ge0\)
\(\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi : \(ad=bc\)
Vậy ...
Sử dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(a+b\right)\left(c+d\right)=\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{c}^2+\sqrt{d}^2\right)\)
\(\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(< =>\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\left(đpcm\right)\)
okey?
có thiếu ĐK nào k bạn ?
áp dụng BĐT cauchy :
\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)
việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))
dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)
Bđt Bu-nhia-cop-xki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\), đẳng thức xảy ra khi \(ay=bx\)
a.
\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)=5^2\)
\(\Rightarrow-5\le2x+3y\le5\)
b.
\(\sqrt{a+c}.\sqrt{b+c}+\sqrt{a-c}.\sqrt{b-c}\le\sqrt{a+c+a-c}.\sqrt{b+c+b-c}\)
\(=\sqrt{2a}.\sqrt{2b}=2\sqrt{ab}\)
Dấu bằng xảy ra khi \(\frac{\sqrt{a+c}}{\sqrt{a-c}}=\frac{\sqrt{b+c}}{\sqrt{b-c}}\), hay \(a=b\)
Thử lại với a = b thì \(VT=2a=2\sqrt{ab}=VP>\sqrt{ab}\) nên đề đã ra sai vế phải của bđt.
c.
bđt \(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
d.
bđt \(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\le a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\)
\(\Leftrightarrow ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
bđt trên luôn đúng vì theo bđt Bu-nhia-cop-xki, ta có:
\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\sqrt{\left(ac+bd\right)^2}=\left|ac+bd\right|\ge ac+bd\)
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)
CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)
Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)
Áp dụng Bđt Bunhiacopski, ta có:
\(ac+bd\le\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}\)
Mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}+c^2+d^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
Đề đánh bị lỗi.
Áp dụng bất đẳng thức Bunhiacopski:
\(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\le\sqrt{\left[\sqrt{c}^2+\sqrt{\left(a-c\right)}^2\right]\left[\sqrt{c}^2+\sqrt{\left(b-c\right)}^2\right]}\)
\(=\sqrt{\left(c+a-c\right)\left(c+b-c\right)}=\sqrt{ab}\)
Lời giải:
Ta có:
\(\sqrt{(a+b)(c+d)}\geq \sqrt{ac}+\sqrt{bd}\)
\(\Leftrightarrow (a+b)(c+d)\geq (\sqrt{ac}+\sqrt{bd})^2\)
\(\Leftrightarrow ac+ad+bc+bd\geq ac+bd+2\sqrt{acbd}\)
\(\Leftrightarrow ad+bc-2\sqrt{acbd}\geq 0\)
\(\Leftrightarrow (\sqrt{ad}-\sqrt{bc})^2\geq 0\) (luôn đúng)
Ta có đpcm. Dấu "=" xảy ra khi $ad=bc$
Hoặc có thể áp dụng trực tiếp BĐT Bunhiacopxky:
\((a+b)(c+d)=[(\sqrt{a})^2+(\sqrt{b})^2][(\sqrt{c})^2+(\sqrt{d})^2]\)
\(\geq (\sqrt{ac}+\sqrt{bd})^2\)
\(\Rightarrow \sqrt{(a+b)(c+d)}\geq \sqrt{ac}+\sqrt{bd}\) (đpcm)