K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Áp dụng BĐT bunhiacopxki cho 2 bộ số \(\left(\sqrt{a}.\sqrt{b+c};\sqrt{b}.\sqrt{d+c};\sqrt{c}.\sqrt{d+a};\sqrt{d}.\sqrt{a+b}\right)\)

và \(\left(\frac{\sqrt{a}}{\sqrt{b+c}};\frac{\sqrt{b}}{\sqrt{d+c}};\frac{\sqrt{c}}{\sqrt{d+a}};\frac{\sqrt{d}}{\sqrt{a+b}}\right)\), ta được:

\(\left[a\left(b+c\right)+b\left(d+c\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)\(\left(\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\right)\)\(\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\)\(\ge\frac{\left(a+b+c+d\right)^2}{ab+ac+bd+bc+cd+ac+ad+bd}\)(1)

Ta có \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(luôn đúng)

Do đó: \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)(2)

Từ (1) và (2) suy ra ĐPCM

Dấu "=" xảy ra khi và chỉ khi a=b=c=d

5 tháng 2 2020

Áp dụng BĐT : \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với x,y > 0

Ta có : \(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)

Tương tự : \(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)

Cần chứng minh : \(\frac{a^2+b^2+c^2+d^2+ad+bc+ab+cd}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

Dấu "=" xảy ra khi a = c ; b = d

Vậy ....

31 tháng 1 2017

Áp dụng BĐT \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\) với a , b > 0 ta có :

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a\left(d+a\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}=\frac{ad+a^2+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\frac{4\left(ad+a^2+bc+c^2\right)}{\left(a+b+c+d\right)^2}\) ( 1 )

\(\frac{b}{c+d}+\frac{d}{a+b}=\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}=\frac{ab+b^2+cd+d^2}{\left(a+b\right)\left(c+d\right)}\ge\frac{4\left(ab+b^2+cd+d^2\right)}{\left(a+b+c+d\right)^2}\) ( 2 )

Từ ( 1 ) và ( 2 ) cộng theo từng vế:

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Cần chứng minh rằng \(\frac{\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow2\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow2ab+2bc+2cd+2ad+2a^2+2b^2+2c^2+2d^2\ge a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2cd+2bd\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge2ac+2bd\)

\(\Rightarrow a^2-2ac+c^2+b^2-2bd+d^2\ge0\)

\(\Rightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\left(đpcm\right)\)

Vậy \(\frac{ab+bc+cd+ad+a^2+b^2+c^2+d^2}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge2\)

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)

10 tháng 10 2019

Áp dụng BĐT Cauchy Schwarz dạng Engel và BĐT AM - GM ta có :

\(M=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)

\(=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ac}+\frac{d^2}{ad+bd}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{ad+bc+cd+ab+2ac+2bd}\)

\(=\frac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+2ac+2bd}\)

\(\ge\frac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+a^2+b^2+c^2+^2}\)

\(=\frac{2\left(a+b+c+d\right)^2}{\left(a+b+c+d\right)^2}=2\)

Dấu "=" xảy ra khi a = b = c = d

Chúc bạn học tốt !!!

28 tháng 12 2015

 

\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)

=> VT >/ 2

Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)

28 tháng 12 2015

\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)

\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)

\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)

Dấu '' = '' xảy ra khi a = b + c+ d 

                              b = c+d+a 

                            c = b+a+d

                             d = a+b+c 

Hình như ko có a ; b; c ;d 

18 tháng 2 2017

Xét: \(\sqrt{\frac{a}{b+c+d}}=\frac{\sqrt{a}}{\sqrt{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\)

\(\sqrt{\frac{b}{c+d+a}}=\frac{\sqrt{b}}{\sqrt{c+d+a}}=\frac{b}{\sqrt{b\left(c+d+a\right)}}\)

\(\sqrt{\frac{c}{d+a+b}}=\frac{\sqrt{c}}{\sqrt{d+a+b}}=\frac{c}{\sqrt{c\left(d+a+b\right)}}\)

\(\sqrt{\frac{d}{a+b+c}}=\frac{\sqrt{d}}{\sqrt{a+b+c}}=\frac{d}{\sqrt{d\left(a+b+c\right)}}\)

\(\Rightarrow VT=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{a\left(b+c+d\right)}\le\frac{a+b+c+d}{2}\\\sqrt{b\left(c+d+a\right)}\le\frac{a+b+c+d}{2}\\\sqrt{c\left(d+a+b\right)}\le\frac{a+b+c+d}{2}\\\sqrt{d\left(a+b+c\right)}\le\frac{a+b+c+d}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\\\frac{b}{\sqrt{b\left(c+d+a\right)}}\ge\frac{2b}{a+b+c+d}\\\frac{c}{\sqrt{c\left(d+a+b\right)}}\ge\frac{2c}{a+b+c+d}\\\frac{d}{\sqrt{d\left(a+b+c\right)}}\ge\frac{2d}{a+b+c+d}\end{matrix}\right.\)

\(\Rightarrow VT\ge\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}\)

\(\Rightarrow VT\ge\frac{2\left(a+b+c+d\right)}{a+b+c+d}\)

\(\Rightarrow VT\ge2\)

\(\Rightarrow\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\ge2\)

\(\Leftrightarrow\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\ge2\) ( đpcm )

AH
Akai Haruma
Giáo viên
18 tháng 2 2017

Lời giải:

Áp dụng bất đẳng thức AM-GM:

\(\frac{b+c+d}{a}=\frac{b+c+d}{a}.1\leq \left(\frac{\frac{b+c+d}{a}+1}{2}\right)^2=\left(\frac{b+c+d+a}{2a}\right)^2\)

\(\sqrt{\frac{a}{b+c+d}}\geq \frac{2a}{a+b+c+d}\). Tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\geq \frac{2(a+b+c+d)}{a+b+c+d}=2\) (đpcm)

12 tháng 8 2016

\(\text{~~ Lời giải ~~}\)

Sử dụng giả thiết  \(a,b,c,d\in R^+,\)  dễ thấy bất đẳng thức cần chứng minh tương đương với mỗi bất đẳng thức trong dãy các biến số sau:

\(\frac{a\left(a+d\right)}{\left(a+d\right)\left(b+c\right)}+\frac{b\left(a+b\right)}{\left(a+b\right)\left(c+d\right)}+\frac{c\left(b+c\right)}{\left(a+d\right)\left(b+c\right)}+\frac{d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}\ge2\) \(\left(\text{*}\right)\)

Đặt bất đẳng thức cần chứng minh là bất đẳng thức  \(\left(\text{*}\right)\)

Khi đó, ta kí hiệu  \(VT\left(\text{*}\right)\)  là vế trái của bất đẳng thức  \(\left(\text{*}\right)\)

Mặt khác, áp dụng bất đẳng thức  \(AM-GM\)  cho bốn số , ta có:

\(a+b+c+d\ge2\sqrt{\left(a+d\right)\left(b+c\right)}\)

\(\Rightarrow\)  \(\frac{1}{\left(a+d\right)\left(b+c\right)}\ge\frac{4}{\left(a+b+c+d\right)^2}\)

Từ đó, ta xây dựng được một bất đẳng thức mới có dạng sau:

\(\frac{a\left(a+d\right)}{\left(a+d\right)\left(b+c\right)}\ge\frac{4a\left(a+d\right)}{\left(a+b+c+d\right)^2}=\frac{4\left(a^2+ad\right)}{\left(a+b+c+d\right)^2}\)

Đổi biến theo vòng hoán vị  \(b\rightarrow c\rightarrow d\rightarrow a,\)   ta lần lượt thiết lập được các bất đẳng thức tương tự theo công đoạn trên:

                                    \(\frac{b\left(a+b\right)}{\left(a+b\right)\left(c+d\right)}\ge\frac{4\left(b^2+ab\right)}{\left(a+b+c+d\right)^2}\)

                                    \(\frac{c\left(b+c\right)}{\left(a+d\right)\left(b+c\right)}\ge\frac{4\left(c^2+bc\right)}{\left(a+b+c+d\right)^2}\)

                                     \(\frac{d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}\ge\frac{4\left(d^2+cd\right)}{\left(a+b+c+d\right)^2}\)

Kết hợp bốn bất đẳng thức vừa chứng minh ở trên, ta suy ra:

\(VT\left(\text{*}\right)\ge\frac{4\left(a^2+b^2+c^2+d^2+ab+bc+ca+da\right)}{\left(a+b+c+d\right)^2}\)

Đến đây, để hoàn tất việc chứng minh, ta cần chỉ ra rằng:

\(\frac{4\left(a^2+b^2+c^2+d^2+ab+bc+ca+da\right)}{\left(a+b+c+d\right)^2}\ge2\)

Bằng phép biến đổi tương đương, ta thu được một bất đẳng thức mới sau:

\(\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

là một bất đẳng thức luôn đúng với mọi  \(a,b,c,d\in R^+.\)  Do đó, điều này kéo theo bất đẳng thức ban đầu được chứng minh!

Dấu  \("="\)  xảy ra khi và chỉ khi  \(a=b=c=d\)

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

31 tháng 5 2020

Ta có:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\)

= \(\left(1-\frac{a^2}{a^2+1}\right)+\left(1-\frac{b^2}{b^2+1}\right)+\left(1-\frac{c^2}{c^2+1}\right)+\left(1-\frac{d^2}{d^2+1}\right)\)

= \(4-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}+\frac{d^2}{d^2+1}\right)\)

Áp dụng Cô - si:

\(a^2+1\ge2\sqrt{a^2.1}=2a\) <=> \(\frac{a^2}{a^2+1}\le\frac{a}{2}\)

Tương tự => \(\left\{{}\begin{matrix}\frac{b^2}{b^2+1}\le\frac{b}{2}\\\frac{c^2}{c^2+1}\le\frac{c}{2}\\\frac{d^2}{d^2+1}\le\frac{d}{2}\end{matrix}\right.\)

<=> \(4-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}+\frac{d^2}{d^2+1}\right)\)

\(\ge4-\frac{a+b+c+d}{2}=2\)

5 tháng 8 2017

a/(b+c)+c/(a+d)=a^2+ad+c^2+bc/(a+d)(b+c)>=4(a^2+ad+c^2+bc)/(a+b+c+d)^2(BĐT 1/xy>=4/(x+y)^2

Tương tự rồi cộng lại ta có a/b+c+c/a+d+b/c+d+d/a+b>=4(a^2+b^2+c^2+d^2+ad+bc+ab+cd)/(a+b+c+d)^2=A

>>>Ta sẽ chứng minh A>=1/2 hay 2(a^2+b^2+c^2+d^2+ab+bc+cd+da)>=(a+b+c+d)^2

 tương đương với a^2+b^2+c^2+d^2-2ac-2bd>=0<<->>(a-c)^2+(b-d)^2>=0(luôn đúng)(đpcm)

Dấu = xảy ra khi a=c và b=d

đây là Nesbit 4 số

nếu như gặp bđt Nesbit thì làm thế này:

đặt \(B=\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\)

\(C=\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}+\frac{b}{a+b}\)

\(B+C=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)

\(A+B=\frac{a+b}{b+c}+\frac{b+c}{c+d}+\frac{c+d}{d+a}+\frac{d+a}{a+b}\ge4\)(theo cô si)

\(A+C=\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(\Rightarrow2A+B+C\ge8\Rightarrow2A+4\ge8\Rightarrow A\ge2\)

dấu bằng khi a=b=c=d