K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Lời giải:

Áp dụng BĐT AM-GM dạng ngược dấu (\(ab\leq (\frac{a+b}{2})^2\) )ta có:

\(\frac{b+c+d}{a}.1\leq \left(\frac{\frac{b+c+d}{a}+1}{2}\right)^2=\frac{(a+b+c+d)^2}{4a^2}\)

\(\Rightarrow \frac{a}{b+c+d}\geq \frac{4a^2}{(a+b+c+d)^2}\)\(\Rightarrow \sqrt{\frac{a}{b+c+d}}\geq \frac{2a}{a+b+c+d}\)

Hoàn toàn tương tự:

\(\left\{\begin{matrix} \sqrt{\frac{b}{c+d+a}}\geq \frac{2b}{a+b+c+d}\\ \sqrt{\frac{c}{d+a+b}}\geq \frac{2c}{a+b+c+d}\\ \sqrt{\frac{d}{a+b+c}}\geq \frac{2d}{a+b+c+d}\end{matrix}\right.\)

Cộng theo vế: \(\Rightarrow \text{VT}\geq \frac{2a+2b+2c+2d}{a+b+c+d}=2\)

Dấu bằng xảy ra khi \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=1\)

\(\Leftrightarrow a+b+c+d=0\) (VL do $a,b,c,d$ dương)

Do đó dấu bằng không xảy ra .

Hay \(\text{VT}>2\) (đpcm)

8 tháng 8 2017

Ta có BĐT phụ \(\dfrac{1+\sqrt{a}}{1-a}\ge4a+1\)

\(\Leftrightarrow-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)^2}{\sqrt{a}-1}\ge0\forall\dfrac{1}{4}< a< 0\)

Tương tự cho 3 BĐT còn lại ta cũng có:

\(\dfrac{1+\sqrt{b}}{1-b}\ge4b+1;\dfrac{1+\sqrt{c}}{1-c}\ge4c+1;\dfrac{1+\sqrt{d}}{1-d}\ge4d+1\)

Cộng theo vế 4 BĐT trên ta có:

\(VT\ge4\left(a+b+c+d\right)+4=8=VP\)

Xảy ra khi \(a=b=c=d=\dfrac{1}{4}\)

8 tháng 8 2017

Ta cần chứng minh :

\(\dfrac{1+\sqrt{a}}{1-a}\ge4a+1\) \(\forall a\in\left(0;\dfrac{1}{4}\right)\)

\(\Leftrightarrow1+\sqrt{a}\ge\left(4a+1\right)\left(1-a\right)\)

\(\Leftrightarrow1+\sqrt{a}\ge4a-4a^2+1-a\)

\(\Leftrightarrow4a^2-4a-1+a+1+\sqrt{a}\ge0\)

\(\Leftrightarrow4a^2-3a+\sqrt{a}\ge0\)

\(\Leftrightarrow\left(4a^2-a\right)-\left(2a-\sqrt{a}\right)\ge0\)

\(\Leftrightarrow\left(2a-\sqrt{a}\right)\left(2a+\sqrt{a}\right)-\left(2a-\sqrt{a}\right)\ge0\)

\(\Leftrightarrow\left(2a-\sqrt{a}\right)\left(2a+\sqrt{a}-1\right)\ge0\)

Ta có: \(2a-\sqrt{a}=\left(\sqrt{2a}-\dfrac{\sqrt{2}}{4}\right)^2-\dfrac{1}{8}\ge0\) \(\forall a\in\left(0;\dfrac{1}{4}\right)\)

\(\left(2a+\sqrt{a}-1\right)=\left(\sqrt{2a}+\dfrac{\sqrt{2}}{4}\right)^2-\dfrac{9}{8}\ge0\)

\(\forall a\in\left(0;\dfrac{1}{4}\right)\)

Vậy: \(\dfrac{1+\sqrt{a}}{1-a}\ge4a+1\) \(\forall a\in\left(0;\dfrac{1}{4}\right)\)

Tương tự: \(\dfrac{1+\sqrt{b}}{1-b}\ge4b+1\forall b\in\left(0;1\right)\)

\(\dfrac{1+\sqrt{c}}{1-c}\ge4c+1\forall c\in\left(0;\dfrac{1}{4}\right)\)

\(\dfrac{1+\sqrt{d}}{1-d}\ge4d+1\forall d\in\left(0;\dfrac{1}{4}\right)\)

Cộng các BĐT vừa chứng minh, ta được:

\(\dfrac{1+\sqrt{a}}{1-a}+\dfrac{1+\sqrt{b}}{1-b}+\dfrac{1+\sqrt{c}}{1-c}+\dfrac{1+\sqrt{d}}{1-d}\ge4\left(a+b+c+d\right)+4=8\)

Vậy: Ta suy ra được điều phải chứng minh

3 tháng 4 2023

Bài làm :

Ta có : \(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2+y^2\ge2xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\left(1\right)\)

Áp dụng BĐT (1) ta có :

\(\dfrac{a}{b+c}+\dfrac{c}{d+a}=\dfrac{a^2+ad+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\dfrac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\left(2\right)\)

Tương tự : \(\dfrac{b}{c+d}+\dfrac{d}{a+b}\ge\dfrac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\left(3\right)\)

Cộng các về của các BĐT (2) và (3) ta được :

\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)

\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2\left(2a^2+2b^2+2c^2+2d^2+2ad+2bc+2ab+2cd\right)}{\left(a+b+c+d\right)^2}\)

\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2]}{\left(a+b+c+d\right)^2}=2B\)

Ta dễ dàng chứng minh được : \(B\ge1\)

Thật vậy :

\(\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2}{\left(a+b+c+d\right)^2}\ge1\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(d+a\right)^2\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

\(\Rightarrowđpcm\)

Dấu đằng thức xảy ra : \(\Leftrightarrow a=c;b=d\)

3 tháng 4 2023

khó thế tui ko hỉu

 

14 tháng 6 2017

Search mạng trước khi đăng nhs bn!

Cho a,b,c,d >0 .CMR: a/(b+c) + b/(c+d) + c/(d+a) + d/( a+b)? | Yahoo Hỏi & Đáp

19 tháng 4 2018

Cauchy-Schwarz đi bn