K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

ai giải giúp mình với

23 tháng 1 2017

a+b+c=1 => 1+b/a+c/a=1/a 

Tuơng tự 1+a/b+c/b=1/b , 1+b/c+a/c=1/c 

Cộng theo vế các đẳng thức trêm,ta được :

1/a+1/b+1/c=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a)

-hình như đề thiếu dữ kiện a,b,c dương rồi-,xem lại đề

28 tháng 3 2018

Áp dụng BĐT Cauchy-Schwarz dưới dạng phân số ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)

<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (vì a+b+c=1) (đpcm)

28 tháng 3 2018

Cách khác dùng AM-GM

Áp dụng bđt AM-GM cho 3 số không âm ta được:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)

Tiếp tục áp dụng bđt AM-GM cho 3 số không âm ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\dfrac{3}{\sqrt[3]{abc}}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)(đpcm)

13 tháng 10 2016

Ta có \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{abc}\)

Theo đề bài ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}\)

\(\ge\frac{3\sqrt[3]{a^2b^2c^2}}{abc}=\frac{3}{\sqrt[3]{abc}}\ge9\)

25 tháng 1 2017

1/a+1/b+1/c >= 9

<=>(1/a+1/b+1/c)(a+b+c) >= 9(a+b+c)=9 (do a+b+c=1)

<=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) 

áp dụng bđt côsi cho các số dương a/b,b/a,b/c,c/b,c/a,a/c 

a/b+b/a >= 2.căn a/b . b/a =2 

Tương tự b/c+c/b >= 2,c/a+a/c >= 2

=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) >= 3+2+2+2=9 

=>đpcm

31 tháng 3 2020

Từ : \(a+b+c=1\) \(\Rightarrow\hept{\begin{cases}\frac{1}{a}=1+\frac{b}{a}+\frac{c}{a}\\\frac{1}{b}=1+\frac{a}{b}+\frac{c}{b}\\\frac{1}{c}=1+\frac{a}{c}+\frac{b}{c}\end{cases}}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

\(\ge3+2+2+2=9\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

31 tháng 3 2020

Bổ sung a,b,c dương vào đê

Cách 1:

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

Dấu "=" xảy ra tại a=b=c=1/3 

Cách 2:

Áp dụng BĐT Cô si ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)

Mà \(a+b+c=1\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Cách 3:

Xét:\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)

\(\ge3+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{\frac{b}{c}\cdot\frac{c}{b}}+2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}\)

\(=3+2+2+2\)

\(=9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) vì a+b+c=1

22 tháng 1 2017

Theo bất đẳng thức Cô-sy ta được:

\(a+b+c\ge3^3\sqrt{abc}\)(1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^3\sqrt{\frac{1}{abc}}\)(2)

Nhân (1) (2) vế heo vế ta được

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)

30 tháng 3 2018

biến đổi cách này dễ hiểu hơn nề:))

vì a+b+c=1 nên

\(\frac{1}{a}\)=\(\frac{a+b+c}{a}\)= 1+ \(\frac{b}{a}\)+\(\frac{c}{a}\)

\(\frac{1}{b}\)=\(\frac{a+b+c}{b}\)= 1+ \(\frac{a}{b}\)+\(\frac{c}{b}\)

\(\frac{1}{c}\)=\(\frac{a+b+c}{c}\)= 1+ \(\frac{a}{c}\)+\(\frac{b}{c}\)

ta có \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)= 1+1+1+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{a}{c}\)+\(\frac{c}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))

ta lại có \(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\)\(\Leftrightarrow\)\(\frac{a^2+b^2}{ab}\)\(\ge\)2\(\Leftrightarrow\)\(a^2\)+\(b^2\)\(\ge\)2ab \(\Leftrightarrow\)(a-b)^2\(\ge\)0      luôn đúng

tương tự ta có a/c+c/a >= 2 và b/c+c/b >= 2

vậy 1/a+1/b+1/c>=9

17 tháng 2 2019

\(\frac{1}{a}=\frac{a+b+c}{a}=1+\frac{b}{a}+\frac{c}{a}\)

\(\frac{1}{b}=\frac{a+b+c}{b}=1+\frac{a}{b}+\frac{c}{b}\)

\(\frac{1}{c}=\frac{a+b+c}{c}=1+\frac{a}{c}+\frac{b}{c}\)

Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge3+2+2+2=9\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}}\Rightarrow a=b=c=\frac{1}{3}\)

18 tháng 2 2019

Áp dụng BĐT AM-GM (Cô si) cho hai số dương,ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}=9^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\\a+b+c=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}}\Leftrightarrow a=b=c=\frac{1}{3}\)

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

17 tháng 12 2015

vì a+b+c =1 nên ta đi cm \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Có \(a+b+c\ge3\sqrt[3]{abc}\) (BĐT Cô si)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) ( BĐT Cô si)
Nhân vế với vế -> đpcm

17 tháng 12 2015

\(\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)