Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)(BĐT Svarxơ)\(\ge\frac{\frac{1}{9}\left(a+b+c\right)^4}{ab+bc+ca}\)(BĐT Bunhiacoxki)
Có: \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow ab+bc+ca\le3\)
\(\Rightarrow P\ge\frac{\frac{1}{9}\left(a+b+c\right)^4}{3}\)\(=\frac{1}{27}\left(a+b+c\right)^4\)
Dễ thấy \(P\ge3\)
Cần C/m \(\left(a+b+c\right)^4\ge81\)
\(\Rightarrow a+b+c\ge3\)
mà\(ab+bc+ca\le3\) kết hợp với gt nên ta có điều đó LĐ.
Vậy Pmin=3\(\Leftrightarrow a=b=c=1\)
Ta luôn có: \(ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow a+b+c+\frac{\left(a+b+c\right)^2}{3}\ge6\)
\(\Rightarrow\left(a+b+c\right)^2+3\left(a+b+c\right)-18\ge0\)
\(\Rightarrow\left(a+b+c-3\right)\left(a+b+c+6\right)\ge0\)
\(\Rightarrow a+b+c-3\ge0\) (do \(a+b+c+6>0\))
\(\Rightarrow a+b+c\ge3\)
\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{3}\right)^2}{\frac{\left(a+b+c\right)^2}{3}}=\frac{\left(a+b+c\right)^2}{3}\ge3\)
\(\Rightarrow P_{min}=3\) khi \(a=b=c=1\)
ta có
\(\frac{a}{1+2b^3}=\frac{a\left(1+2b^3\right)-2ab^3}{1+2b^3}=a-\frac{2ab^3}{1+2b^3}\)
Vì \(1+2b^3\ge3b^2\left(cosi\right)\)
\(\Rightarrow a-\frac{2ab^3}{a+2b^3}\ge a-\frac{2}{3}ab\)
cmtt ta đc
P\(\ge a+b+c-\frac{2}{3}\left(ab+bc+ca\right)\)
\(P\ge a+b+c-2\)
mặt khác \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Rightarrow a+b+c\ge3\)
\(\Rightarrow P\ge3-2=1\)
Dấu = xảy ra a=b=c=1
Áp dụng tính chất : xy < = (x+y)^2/4 thì :
D < = (a+b)^2/4.(a+b) + (b+c)^2/4.(b+c) + (c+a)^2/4.(c+a)
= a+b/4 + b+c/4 + c+a/4
= a+b+b+c+c+a/4
= a+b+c/2
= 1/2
Dấu "=" xảy ra <=> a=b=c=1/3
Vậy .............
Tk mk nha
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.