K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0

5 tháng 3 2017

thank you!!!!!!yeu

14 tháng 9 2017

Ta có:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(c^2=b.d\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\)

Do đó:\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Do đó:\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{b}\left(đpcm\right)\)

14 tháng 9 2017

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{b}{c}\\\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Vậy \(\dfrac{a}{b}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\rightarrowđpcm\)

29 tháng 6 2017

a) \(2x^2-4x+7\)

\(=2\left(x^2-2x+\dfrac{7}{2}\right)\)

\(=2\left(x^2-x-x+\dfrac{7}{2}\right)\)

\(=2\left(x^2-x-x+1+\dfrac{5}{2}\right)\)

\(=2\left[\left(x-1\right)^2+\dfrac{5}{2}\right]\)

\(=2\left(x-1\right)^2+5\)

\(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+\dfrac{5}{2}\ge\dfrac{5}{2}>0\)

\(\Rightarrow\) đt vô nghiệm.

Mấy câu kia cũng tách tương tự.

29 tháng 6 2017

" Giữ nguyên hạng tử bậc hai chia đội hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức"

Chúc bạn học tốt!!!

28 tháng 7 2017

1. a) (x-2)2 =1

=> x - 2 = \(\pm\sqrt{1}\)

=> x - 2 = 1 hoặc -1

=> x = 3 hoặc 1

b) 2x - 1= -8

=> 2x = -7

=>x = \(\dfrac{-7}{2}\)

c)thiếu đề

d) (x-1)x+2 = (x-1)x+4

(x-1)x+2 = (x-1)x+2+2

(x-1)x+2 = (x-1)x+2. (x-1)2

(x-1)x+2 - (x-1)x+2. (x-1)2 = 0

=> (x-1)x+2. [1 - (x-1)2] = 0

\(\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2a) \(\dfrac{45^{10}.5^{10}}{75^{10}}\) = \(\dfrac{\left(3.3.5\right)^{10}.5^{10}}{\left(5.5.3\right)^{10}}\) = \(\dfrac{3^{10}.3^{10}.5^{10}.5^{10}}{5^{10}.5^{10}.3^{10}}\) = \(3^{10}\)

b) \(\dfrac{2^{15}.9^4}{6^6.8^3}\)=\(\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}\)=\(\dfrac{2^{15}.3^8}{2^6.3^6.2^9}\)=\(3^2\)

28 tháng 7 2017

c)\(\left(x-\dfrac{2}{9}^3\right)=\left(\dfrac{2}{3}\right)^6\)thank nhé

15 tháng 8 2017

a) Ta có:

\(\left|x-2017\right|\ge0\) với \(\forall x\)

\(\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu

Vậy \(x;y\in\varnothing\)

b) Ta có:

\(3.\left|x-y\right|^5\ge0\)

\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)

\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)

Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)

\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)

22 tháng 4 2017

a) \(A=-\left(x^2-4xy^2+2xy-3y^2\right)\)

b)

\(C=\left(4x^2+5y^2-3xz+z^2\right)\)

\(D=C+B\)

D không phụ tuộc x => hệ số chứa biến x của B phải là số đối của C

\(B=\left(-4\right)x^2+\left(3z\right)z+E\) với E là một đa thức tùy ý không chứa biến x

22 tháng 4 2017

b) thêm (y) vào hệ số x^2 viết thiếu

\(B=\left(-4y\right)x^2+3z+E\)

26 tháng 4 2017

Mình viết tắt bạn viết đầy đủ nha:

a,\(\dfrac{-1}{4}\)a5b4x5y6.Phần hệ số là:\(\dfrac{-1}{4}\)a5b4

Phần biến là:x5y6.

b, bậc của đơn thức A là bậc 11

29 tháng 7 2017

a, Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)

Ta có: \(4\left(a-b\right)\left(b-c\right)\)

\(=4\left(3k-4k\right)\left(4k-5k\right)\)

\(=4.\left(-k\right).\left(-k\right)=4k^2\) (1)

\(\left(a-c\right)^2=\left(3k-5k\right)^2=4k^2\) (2)

Từ (1), (2) \(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)

\(\Rightarrowđpcm\)