Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\sqrt{a^2+4ab+b^2}=\sqrt{\left(\frac{3}{2}a^2+3ab+\frac{3}{2}b^2\right)-\left(\frac{1}{2}a^2-ab+\frac{1}{2}b^2\right)}\)
\(=\sqrt{\frac{3}{2}\left(a+b\right)^2-\frac{1}{2}\left(a-b\right)^2}\le\sqrt{\frac{3}{2}\left(a+b\right)^2}=\sqrt{\frac{3}{2}}\left(a+b\right)\)
Tương tự, ta có : \(\sqrt{b^2+4bc+c^2}\le\sqrt{\frac{3}{2}}\left(b+c\right);\sqrt{c^2+4ca+a^2}\le\sqrt{\frac{3}{2}}\left(c+a\right)\)
\(\Rightarrow\)\(S\le\sqrt{\frac{3}{2}}\left(a+b\right)+\sqrt{\frac{3}{2}}\left(b+c\right)+\sqrt{\frac{3}{2}}\left(c+a\right)=\sqrt{\frac{3}{2}}.2\left(a+b+c\right)=6\sqrt{6}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=2\)
Áp dụng bđt Cauchy - Schwarz ta có:\(Q=\dfrac{2-2a^2b^2}{\left(1+a^2\right)\left(1+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(1-ab\right)\left(1+ab\right)}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(bc+ca\right)\left(1+ab\right)}{\left(a+b\right)^2\left(b+c\right)\left(c+a\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c\left(1+ab\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2c\left(1+ab\right)}{\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}\le\dfrac{2c\left(1+ab\right)}{\sqrt{\left(ab+1\right)^2\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c}{\sqrt{c^2+1}}+\dfrac{2}{\sqrt{c^2+1}}=\dfrac{2\left(c+1\right)}{\sqrt{c^2+1}}\le\dfrac{2\left(c+1\right)}{\sqrt{\dfrac{\left(c+1\right)^2}{2}}}=2\sqrt{2}\)Dấu "=" xảy ra khi a = b = \(\sqrt{2}-1;c=1\).
Vậy..
Câu này làm thế nào nhỉ.Mình cũng đang thắc mắc.Gần thi huyện rồi
Ta có:
\(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2=3\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+3}}\le\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Tương tự:
\(\dfrac{b}{\sqrt{b^2+3}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+3}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)
Cộng vế:
\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{c}{a+c}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)
\(P_{max}=\dfrac{3}{2}\) khi \(a=b=c=1\)
Đơn giản là Cauchy-Schwarz
\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(1+1+1\right)\)
\(=3\cdot\left(2a+2b+2c\right)=6\left(a+b+c\right)=1\)
\(\Rightarrow S^2\le6\Rightarrow S\le\sqrt{6}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
ta dự đoán điểm khi : \(a=b=c=\frac{1}{3}\)
\(\Rightarrow\sqrt{a+b}=\sqrt{b+c}=\sqrt{a+c}=\sqrt{\frac{2}{3}}\)
Khi đó ta có :
\(\sqrt{\frac{2}{3}}.\sqrt{a+b}\le\frac{\frac{2}{3}+a+b}{2}\)
\(\sqrt{\frac{2}{3}}.\sqrt{b+c}\le\frac{\frac{2}{3}+b+c}{2}\)
\(\sqrt{\frac{2}{3}}.\sqrt{c+a}\le\frac{\frac{2}{3}+a+c}{2}\)
cộng từng vế 3 bất phương trình ta có
\(\sqrt{\frac{2}{3}}.S\le\frac{1}{2}\left(\frac{2}{3}+2\left(a+b+c\right)\right)=2\) \(\Leftrightarrow S\le2.\sqrt{\frac{3}{2}}=\sqrt{6}\)
Vậy \(S_{max}=\sqrt{6}\)dấu "=" khi \(a=b=c=\frac{1}{3}\)
Ta có 4S=\(a\sqrt[3]{8.8.\left(b^2+c^2\right)}+b\sqrt[3]{8.8.\left(c^2+a^2\right)}+c.\sqrt[3]{8.8\left(a^2+b^2\right)}\)
Áp dụng BĐT cô-si, ta có \(\sqrt[3]{8.8.\left(b^2+c^2\right)}\le\frac{8+8+b^2+c^2}{3}\Rightarrow a\sqrt[3]{8.8.\left(b^2+c^2\right)}\le\frac{16}{3}a+\frac{1}{3}\left(ab^2+ac^2\right)\)
Tương tự, rồi cộng lại, ta có
\(4S\le\frac{16}{3}\left(a+b+c\right)+\frac{1}{3}\left(ab^2+ac^2+bc^2+ba^2+ca^2+cb^2\right)\)
Mà \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=6\)
\(ab^2+bc^2+ca^2+a^2b+b^2c+c^2a\le\frac{2}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{2}{3}.6.12=48\)
=> \(4S\le\frac{16}{3}.6+\frac{1}{3}.48=48\Rightarrow S\le12\)
Dấu = xảy ra <=> a=b=c=2
^_^