Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \((1-a)(1-b)(1-c)\geq 0\)
\(\Rightarrow 1-abc+(ab+bc+ca)-(a+b+c)\geq 0\)
\(\Rightarrow 1-(a+b+c)+(ab+bc+ca)\geq 0\)
\(\Rightarrow (a+b+c)-(ab+bc+ca)\leq 1\)
Vì \(a;b;c\in \left [ 0;1 \right ]\) nên \(b^{2}\leq b;c^{3}\leq c\)
\(\Rightarrow a+b^{2}+c^{3}-ab-bc-ca\leq a+b+c-(ab+bc+ca)\leq 1\)
Đẳng thức xảy ra khi \(b=c=1\) và \(a=0\)
cho a,b,c thuộc [0;1]. cmr $a+b^{2}+c^{3}+ab+bc+ca \leq 1$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Ta chứng minh:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Khi đó:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\le16\)
\(\Rightarrow\left(a+b\right)^2\le16\Rightarrow-4\le a+b\le4\Rightarrowđpcm\)
$a(a-1)\leq 0 <=> a^2\leq 0 => \sum a^2 \leq \sum a$
$(a-1)(b-1)(c-1)\leq 0 <=> a+b+c-\sum ab +abc -1 \leq 0$
$<=> \sum a^2 -\sum ab \leq a+b+c-\sum ab \leq 1-abc\leq 1$
^^ Mong olm dịch đ.c tatex mình ghi :v
ta co 3(x2+y2+z2)-3(x+y+z)<=4
de dang chung minh bdt 3(x2+y2+z2)>=(x+y+z)2
ap dung bat dang thuc ta co
3(x2+y2+z2)-(x+y+z)>=(x+y+z)2-3(x+y+z)
=>(x+y+z)2-3(x+y+z)-4<=0
=>(x+y+z+1)(x+y+z-4)<=0
=>-1<=x+y+z=<4 (dpcm)
Bđt cần CM tương đương với:
\(\left(\sqrt{a^2+15bc}+\sqrt{b^2+15ca}+\sqrt{c^2+15ab}\right)^2\le3\left[a^2+b^2+c^2+15\left(ab+bc+ca\right)\right]\)
Ta cần cm \(3\left[a^2+b^2+c^2+15\left(ab+bc+ca\right)\right]\le16\left(a+b+c\right)^2\)
Rút gọn ta đc \(ab+bc+ca\le a^2+b^2+c^2\)
Bđt sau cùng đúng
Ta đc đpcm