\(\dfrac{a}{2\sqrt{b}-5}+\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>

2 tháng 3 2019

Nguyễn Việt Lâm DƯƠNG PHAN KHÁNH DƯƠNG Mysterious Person help

NV
2 tháng 3 2019

Do \(a,b,c>\dfrac{25}{4}\Rightarrow\) các mẫu số đều dương

Áp dụng BĐT Cauchy:

\(M\ge3\sqrt[3]{\dfrac{abc}{\left(2\sqrt{b}-5\right)\left(2\sqrt{c}-5\right)\left(2\sqrt{a}-5\right)}}\)

\(\Rightarrow M\ge3\sqrt[3]{\dfrac{5^3.abc}{5\left(2\sqrt{b}-5\right).5\left(2\sqrt{c}-5\right).5\left(2\sqrt{a}-5\right)}}\)

Ta có: \(\left\{{}\begin{matrix}5\left(2\sqrt{a}-5\right)\le\dfrac{\left(5+2\sqrt{a}-5\right)^2}{4}=a\\5\left(2\sqrt{b}-5\right)\le\dfrac{\left(5+2\sqrt{b}-5\right)^2}{4}=b\\5\left(2\sqrt{c}-5\right)\le\dfrac{\left(5+2\sqrt{c}-5\right)^2}{4}=c\end{matrix}\right.\)

\(\Rightarrow M\ge3\sqrt[3]{\dfrac{5^3.abc}{abc}}=3.5=15\)

\(\Rightarrow M_{min}=15\) khi \(a=b=c=25\)

NV
2 tháng 3 2019

Bạn áp dụng BĐT \(xy\le\dfrac{\left(x+y\right)^2}{4}\)

Dấu "=" xảy ra khi x=y

Hơn nữa, cũng áp dụng để tìm dấu "=" cuối bài, ta có \(5=2\sqrt{a}-5\Rightarrow2\sqrt{a}=10\Rightarrow a=25\), đó là lý do tại sao biết đẳng thức xảy ra tại a=b=c=25

13 tháng 8 2018

a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

=\(\left|\sqrt{3}-2\right|+\left|1+\sqrt{3}\right|\)

=\(2-\sqrt{3}+1+\sqrt{3}\)

=3

13 tháng 8 2018

Mình giải được câu trên còn mấy câu dưới mình không thấy.