Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có:
\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\left(x^2+y^2\right)xy\)
Đặt vế trái của BĐT cần chứng minh là P, áp dụng bồ đề vừa chứng minh ta có:
\(P\le\dfrac{a.abc}{bc\left(b^2+c^2\right)+a.abc}+\dfrac{b.abc}{ca\left(c^2+a^2\right)+b.abc}+\dfrac{c.abc}{ab\left(a^2+b^2\right)+c.abc}\)
\(P\le\dfrac{a^2.bc}{bc\left(a^2+b^2+c^2\right)}+\dfrac{b^2.ac}{ca\left(a^2+b^2+c^2\right)}+\dfrac{c^2.ab}{ab\left(a^2+b^2+c^2\right)}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
2.
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=1\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2}{3}\)
Câu trả lời hay nhất: áp dụng BĐT bunhiacopxki
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 1/3
dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3
tk mk nha $_$
a) a3+b3+a2c+b2c-abc
= (a+b)(a2-ab+b2)+c(a2+b2)-abc
=(a+b) [ (a+b)2-3ab]+c.[(a+b)2-2ab]-abc
=(a+b)(a+b)2-3ab(a+b)+c(a+b)2-3abc
=(a+b)2(a+b+c)-3ab(a+b+c)
=(a+b)2.0-3ab.0
=0
b) ax+ay+2x+2y+4
=a(x+y)+2(x+y)+4
=(x+y)(a+2)+4
=(a-2)(a+2)+4
=a2-4+4
=a2
c) A=1+x+x2+...+x49=>Ax=x+x2+x3+...+x50
- A=1+x+x2+...+x49
---> Ax-A=x50-1
d)(a+b)(a+c)+(c+a)(c+b)
=a2+ac+ab+bc+c2+bc+ac+ab
=a2+c2+2ac+2ab+2bc
=2b2+2bc+2ac+2ab
=2b(b+c)+2a(b+c)
=2b(b+c)(b+a)
(a-1)(b-1)(c-1)
=(ab-a-b+1)(c-1)
=abc+a+b+c-ab-bc-ac-1
mà abc=1
=>1+a+b+c-ab-bc-ac-1
=a+b+c-ab-bc-ac
vì abc=1
=>ab=1/c;bc=1/a;ac=1/b
=>(a+b+c)-(1/a+1/b+1/c)
mà a+b+c>1/a+1/b+1/c
=>(a+b+c)-(1/a+1/b+1/c)>0
=>(a-1)(b-1)(c-1)>0
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
\(=\left(ab-a-b+1\right)\left(c-1\right)\)
\(=abc-ac-bc+c-ab+a+b-1\)
\(=-ac-bc+c-ab+a+b\)
Mà abc = 1 nên \(\hept{\begin{cases}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{cases}}\)
\(ĐT\Leftrightarrow\left(a+b+c\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>0\)
(Vì \(\left(a+b+c\right)>\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\))
Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\left(đpcm\right)\)
\(\left\{{}\begin{matrix}a+b+c\ge2\sqrt{c\left(a+b\right)}\\b+c\ge2\sqrt{bc}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)^2\ge4a\left(b+c\right)\\\left(b+c\right)^2\ge4bc\end{matrix}\right.\\ \Leftrightarrow16\left(b+c\right)=\left(a+b+c\right)^2\left(b+c\right)\\ \ge4a\left(b+c\right)\left(b+c\right)=4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\\ \Leftrightarrow16\left(b+c\right)\ge16abc\\ \Leftrightarrow b+c\ge abc\)
Dấu \("="\Leftrightarrow b=c=1;a=2\)