K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:

Đặt \(\frac{ab}{c}=x; \frac{bc}{a}=y; \frac{ca}{b}=z\Rightarrow a^2=xz; b^2=xy; c^2=yz\)

Bài toán trở thành: Cho $x,y,z>0$ thỏa mãn \(xy+yz+xz=3\)

Chứng minh \(x+y+z\geq 3\)

-------------------------------------------

Theo hệ quả quen thuộc của BĐT AM-GM:

\(x^2+y^2+z^2\geq xy+yz+xz\)

\(\Rightarrow x^2+y^2+z^2+2(xy+yz+xz)\geq 3(xy+yz+xz)\)

\(\Leftrightarrow (x+y+z)^2\geq 3(xy+yz+xz)=9\)

\(\Rightarrow x+y+z\geq 3\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z=1$ hay $a=b=c=1$

25 tháng 6 2023

Áp dụng bất đẳng thức Cô si cho hai số dương ta có:

(a2 + b2) + (b2 + c2) + (c2 + a2) ≥ 2ab + 2bc + 2ca

=> 2(a2 + b2 + c2 ) ≥ 2 (ab + bc + ca) (1) (a2 + 1) + (b2 + c2) + (c2 + a2) ≥ 2a + 2b + 2c

=> a2 + b2 + c2 + 3 ≥ 2(a + b + c) (2)

Cộng các vế của (1) và (2) ta có:

3 ( a2 + b2 + c2 ) + 3 ≥ 2 (ab + bc + ca + a + b + c)

=> 3( a2 + b2 + c2 ) + 3 ≥ 12 => a2 + b2 + c2 ≥ 3.

Ta có: (a^3/b + ab ) + ( b^3/c + bc ) + ( c^3/a + ca)≥ 2(a2 + b2 + c2) (CÔ SI) 

<=>a^3/b + b^3/c + c^3/a +ab + bc + ac  ≥ 2(a2 + b2 + c2)

Vì a2 + b2 + c2 ≥ ab + bc + ca => a^3 + b^3 + c^3 ≥ a2 + b2 + c2 ≥ 3 (đpcm).

25 tháng 6 2023

Áp dụng bất đẳng thức cô-si cho hai số dương ta có:

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (1)

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2a+2b+2c\)

\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) (2)

Cộng (1) với (2)

\(3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Ta có: \(\left(\dfrac{a^3}{b}+ab\right)+\left(\dfrac{b^3}{c}+bc\right)+\left(\dfrac{c^3}{a}+ca\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\)

Vì \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\ge3\) (đpcm).

NV
4 tháng 10 2021

\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)

\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

NV
21 tháng 8 2021

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 8 2021

thx, appreciate it

20 tháng 2 2021

Đặt\(P=\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2+}+\dfrac{1}{2}\left(ab+bc+ca\right)\) 

Bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\) \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) (1)

Chứng minh bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\sqrt[3]{abc.\dfrac{1}{abc}}=9\left(\forall a,b,c\ge0\right)\) 

Kết hợp điều kiện đề bài ta được: \(a+b+c\ge3\)

Ta có: \(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2\sqrt{b^2}}=\dfrac{ab}{2}\) ( AM-GM cho 2 số không âm 1 và b^2 )

\(\Rightarrow\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\left(1\right)\)

Chứng minh hoàn toàn tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2}\left(2\right)\)

\(\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\left(3\right)\)

Cộng (1),(2),(3) vế theo vế thu được: \(P\ge a+b+c=3\)

Dấu "=" xảy ra tại a=b=c=1

 

20 tháng 2 2021

Cách gundefinediải của