Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:
\(3\left(a^2+b^2+c^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\left(a+b+c\right)^2\le3.3=9\)hay \(a+b+c\le3\)(do \(a^2+b^2+c^2=3\))
Theo bất đẳng thức Mincopxki và bất đẳng thức Bunyakovsky dạng phân thức, ta được:
\(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)
\(\ge\sqrt{9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)
\(\ge\sqrt{9\left[\frac{9}{2\left(a+b+c\right)}\right]^2+\left(a+b+c\right)^2}\)
Đến đây, ta cần chứng minh rằng: \(\sqrt{9\left[\frac{9}{2\left(a+b+c\right)}\right]^2+\left(a+b+c\right)^2}\ge\frac{3\sqrt{13}}{2}\)(*)
Đặt \(t=a+b+c\Rightarrow0< t\le3\)
Khi đó, (*) trở thành \(\sqrt{9\left(\frac{9}{2t}\right)^2+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow9\left(\frac{9}{2t}\right)^2+t^2\ge\frac{117}{4}\)
\(\Leftrightarrow\frac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)(đúng với mọi \(0< t\le3\))
Đẳng thức xảy ra khi a = b = c = 1
B2:Áp dụng cô si ta có:\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Ta có \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4\left(1\right)\)
Từ \(\left(1\right)\)suy ra BĐT tương đương với \(a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}\ge\frac{17}{2}\)
Ta có \(a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}=\left(a+b\right)^2-2ab+\frac{\left(a+b\right)^2-2ab}{a^2b^2}\)Mà \(ab\le\frac{1}{4}\)
Nên \(\hept{\begin{cases}\left(a+b\right)^2-2ab=1-2.\frac{1}{4}=\frac{1}{2}\left(2\right)\\\frac{\left(a+b\right)^2-2ab}{a^2b^2}\ge\frac{\frac{1}{2}}{\frac{1}{16}}=8\left(3\right)\end{cases}}\)
Cộng \(\left(2\right)vs\left(3\right)\)lại ta thu được \(đpcm\)
Dấu \(=\)xảy ra khi \(a=b=\frac{1}{2}\)
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bdt Cauchy ta có :
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)--\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=3\)
Chúc bạn học tốt !!!
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng BĐT Cauchy ta có :
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=3\)
Chúc bạn học tốt !!!
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
Thử :
Áp dụng BĐT Cosi ta đc :
\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge\frac{9}{a+b+c}\)
\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge3\sqrt{\frac{a}{c}.\frac{b}{a}.\frac{c}{b}}=3\)
Dấu ''='' xảy ra khi \(\frac{9}{a+b+c}\Leftrightarrow\frac{9}{3+3+3}=1\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases};c=1}\)
Lần đầu lm cs vẻ sai phần trình bày
No Name làm thế này mới đúng
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{c}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\)
Ta sẽ chứng minh
\(\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{9}{a+b+c}\Leftrightarrow\frac{3}{ab+bc+ca}+2\ge\frac{9}{a+b+c}\)
Đặt a+b+c=t thì ta cần chứng minh
\(\frac{6}{t^2-3}+2\ge\frac{9}{t}\Leftrightarrow\left(t+3\right)\left(t-3\right)^2\ge0\)
Dấu "=" xảy ra <=> a=b=c=1