Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)
Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)
Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)
Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)
Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)
Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)
Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)
Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)
\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)
Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng
Để chứng minh rằng a^2 + b^2 + c^2 < 2 với điều kiện a + b + c = 0 và -1 < a <= b <= c < 1, chúng ta có thể sử dụng phương pháp giả định trái ngược (proof by contradiction).
Giả sử rằng a^2 + b^2 + c^2 >= 2, sau đó chúng ta sẽ chứng minh rằng điều kiện a + b + c = 0 không thể thỏa mãn.
Với a + b + c = 0, chúng ta có thể viết lại bằng cách sử dụng c = -(a + b):
a^2 + b^2 + (-a-b)^2 >= 2
Mở ngoặc và rút gọn:
a^2 + b^2 + a^2 + 2ab + b^2 >= 2
3a^2 + 2ab + 2b^2 >= 2
Chúng ta sẽ chứng minh rằng bất phương trình trên không thể đúng với điều kiện -1 < a <= b <= c < 1.
Với -1 < a <= b <= c < 1, ta có:
-1 < a <= b <= -a-b < 1
Thêm cả hai vế của bất phương trình này:
-1 < a+b <= 0 < 1
Điều này cho thấy a + b không thể bằng 1 hoặc -1.
Tiếp theo, chúng ta chứng minh rằng bất phương trình 3a^2 + 2ab + 2b^2 >= 2 không thể đúng với a + b không bằng 1 hoặc -1.
Ta có:
3a^2 + 2ab + 2b^2 >= 2
Với a + b không bằng 1 hoặc -1, ta có:
3a^2 + 2ab + 2b^2 > 3a^2 - a^2 + 2ab + b^2
= 2a^2 + 2ab + b^2
= (a + b)^2 + a^2
Vì (a + b)^2 >= 0 và a^2 >= 0, ta có:
(a + b)^2 + a^2 >= 0 + 0 = 0
Điều này cho thấy rằng bất phương trình không thể đúng.
Vì vậy, giả định ban đầu là sai và chúng ta kết luận rằng a^2 + b^2 + c^2 < 2 với điều kiện a + b + c = 0 và -1 < a <= b <= c < 1.
Với cả 3 phần thì dấu "=" xảy ra tại a=b=c=1.
a) \(\dfrac{a}{1+b^2}=\dfrac{a\left(1+b^2\right)}{1+b^2}-\dfrac{ab^2}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\)
(Cosi) \(\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)
Tương tự : \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2};\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\)
\(\Rightarrow P\ge\left(a+b+c\right)-\dfrac{ab+bc+ca}{2}\ge\left(CS\right)\left(a+b+c\right)-\dfrac{\left(a+b+c\right)^2}{6}=3-\dfrac{3^2}{6}=\dfrac{3}{2}\)
b) \(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge\left(CS\right)1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
Tương tự : \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2};\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)
\(\Rightarrow P\ge3-\dfrac{a+b+c}{2}=3-\dfrac{3}{2}=\dfrac{3}{2}\)
c)\(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}=\left(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\right)+\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\ge\dfrac{3}{2}+\dfrac{3}{2}=3\)