Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách khác:
Xét hiệu:\(a^4+b^4+c^4-abc\left(a+b+c\right)\)
\(=\frac{1}{4}\left[\left(a^2+c^2-2b^2\right)^2+\left(ab+bc-2ca\right)^2\right]+\frac{3}{4}\left(a-c\right)^2\left[\left(a+c\right)^2+b^2\right]\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
P/s: Bài đơn giản, làm 3 dòng:DDD (vắn tắt tuyệt đối)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^4+b^4+c^4)(1+1+1)\geq (a^2+b^2+c^2)^2\)
\((a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2\)
\(\Rightarrow 3(a^4+b^4+c^4)\geq (a^2+b^2+c^2).\frac{(a+b+c)^2}{3}\)
\(\Leftrightarrow a^4+b^4+c^4\geq \frac{(a^2+b^2+c^2)(a+b+c)}{9}.(a+b+c)(1)\)
Áp dụng BĐT AM-GM:
\((a^2+b^2+c^2)(a+b+c)\geq 3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}=9abc(2)\)
Từ $(1);(2)\Rightarrow a^4+b^4+c^4\geq abc(a+b+c)$
hay $\frac{a^4+b^4+c^4}{abc}\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Lời giải:
Ta có:
\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(=27-3(3-a)(3-b)(3-c)\)
\(=27-3[27-9(a+b+c)+3(ab+bc+ac)-abc]\)
\(=27-3[3(ab+bc+ac)-abc]=27-9(ab+bc+ac)+3abc\)
Do đó:
\(A=a^3+b^3+c^3+\frac{15}{4}abc=27-9(ab+bc+ac)+\frac{27}{4}abc(*)\)
Áp dụng BĐT Schur :
\(abc\geq (a+b-c)(b+c-a)(c+a-b)\)
\(\Leftrightarrow abc\geq (3-2a)(3-2b)(3-2c)\)
\(\Leftrightarrow abc\geq 27-18(a+b+c)+12(ab+bc+ac)-8abc\)
\(\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27\)
\(\Leftrightarrow 3abc\geq 4(ab+bc+ac)-9\)
\(\Rightarrow \frac{27}{4}abc\geq 9(ab+bc+ac)-\frac{81}{4}(**)\)
Từ \((*); (**)\Rightarrow A\geq 27-\frac{81}{4}=\frac{27}{4}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
a) \(x^4+y^4\ge xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow x=y\)
b) Áp dụng câu a) ta có :
\(b^4+c^4+a\ge bc\left(b^2+c^2\right)+a\)
Mặt khác : \(abc=1\Leftrightarrow bc=\frac{1}{a}\)
\(\Rightarrow b^4+c^4+a\ge\frac{b^2+c^2}{a}+a=\frac{a^2+b^2+c^2}{a}\)
\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a}{\frac{a^2+b^2+c^2}{a}}=\frac{a^2}{a^2+b^2+c^2}\)
Chứng minh tương tự :
\(\frac{b}{c^4+a^4+b}\le\frac{b^2}{a^2+b^2+c^2};\frac{c}{a^4+b^4+c}\le\frac{c^2}{a^2+b^2+c^2}\)
Cộng theo vế của 3 bất đẳng thức
\(\Rightarrow A\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Sử dụng bổ đề: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Cách chứng minh bổ đề kia bằng Dirichlet google rất nhiều.
Ta có: \(2a^2+2b^2+2c^2+2abc=8\)
\(\Leftrightarrow9=a^2+b^2+c^2+\left(a^2+b^2+c^2+2abc+1\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow9\ge\left(a+b+c\right)^2\Rightarrow a+b+c\le3\)
\(\Rightarrow3\left(a+b+c\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow a+b+c\ge ab+bc+ca=\frac{1}{2}\left[a\left(b+c\right)+b\left(c+a\right)+a\left(b+c\right)\right]\)
\(\Rightarrow a+b+c\ge\frac{1}{2}\left[a.2\sqrt{bc}+b.2\sqrt{ac}+c.2\sqrt{ab}\right]\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM
Lời giải:
Theo BĐT Schur bậc 3:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)\)
\(\Leftrightarrow abc\geq 27+12(ab+bc+ac)-18(a+b+c)-8abc=-27+12(ab+bc+ac)-8abc\)
\(\Rightarrow 9abc\geq 12(ab+bc+ac)-27\Rightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3\)
Do đó:
\(a^2+b^2+c^2+abc\geq a^2+b^2+c^2+\frac{4}{3}(ab+bc+ac)-3\)
\(=(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-3=6-\frac{2}{3}(ab+bc+ac)\)
Mặt khác theo hệ quả quen thuộc của BĐT AM-GM:
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)
\(\Rightarrow a^2+b^2+c^2+abc\geq 6-\frac{2}{3}(ab+bc+ac)\geq 6-\frac{2}{3}.3=4\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Nếu bạn không được sử dụng thẳng BĐT Schur bậc 3 thì có thể CM nó thông qua BĐT AM-GM ngược dấu.
câu 1.Ta có:
\(\frac{x^2}{x+3y}+\frac{x+3y}{16}\ge2\sqrt{\frac{x^2}{x+3y}.\frac{x+3y}{16}}=\frac{x}{2}\)
\(\frac{y^2}{y+3x}+\frac{y+3x}{16}\ge2\sqrt{\frac{y^2}{y+3x}.\frac{y+3x}{16}}=\frac{y}{2}\)
\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{x+y+3x+3y}{16}\ge\frac{x+y}{2}\)
\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{1}{4}\ge\frac{1}{2}\)
\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}\ge\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)
Câu 2:
điều kiện \(a^2+b^2+c^2+d^2=4\)(đúng ko)
Ta có:
\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{1}{a^2+1}.\frac{a^2+1}{4}}=1\)
\(\frac{1}{b^2+1}.\frac{b^2+1}{4}\ge2\sqrt{\frac{1}{b^2+1}.\frac{b^2+1}{4}}=1\)
\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge2\sqrt{\frac{1}{c^2+1}.\frac{c^2+1}{4}}=1\)
\(\frac{1}{d^2+1}+\frac{d^2+1}{4}\ge2\sqrt{\frac{1}{d^2+1}.\frac{d^2+1}{4}}=1\)
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}+\frac{a^2+b^2+c^2+d^2+4}{4}\ge4\)
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge4-\frac{8}{4}=2\left(đpcm\right)\)