\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1+\frac{a}{b}+1+\frac{b}{c}+1+\frac{c}{a}=3+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)>2\)

3 tháng 5 2018

Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

22 tháng 10 2018

Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)

<=> \(a\left(b+d\right)>b\left(a+c\right)\)

<=> \(ab+ad>bc+ba\)

<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]

<=> \(a>b\)

=> \(\frac{a}{b}>\frac{a+c}{b+d}\)

16 tháng 8 2020

TA CÓ:   \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

TA LUÔN CÓ:   \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

TỪ (1) VÀ (2) =>   \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\) 

VẬY TA CÓ ĐPCM.

16 tháng 8 2020

Cho  \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)

                             \(\frac{c}{a+b+c}< \frac{c}{c+a}\)

Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

                                       1 < B

CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)

Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2

                                      

                                       
 

12 tháng 3 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad>bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\Rightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1); (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b-d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)( đpcm )

23 tháng 3 2018

Áp dụng tính chất dãy tỉ số:

a/b <c/d => a/b < c+a/d+b 

Mà a/b < c/d => a+c/b+d < c+c/d+d= 2c/2d=c/d

Vậy a/b < a+c/b+d <c/d nếu a/b<c/d

8 tháng 9 2018

Ta có : \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)                                                                         ( 1 )

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Vì \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{c}{d}=ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)                                                             ( 2 )

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

14 tháng 5 2018

Ta có: 

\(\frac{a}{b+c+d}>\frac{a}{a+b+c+d};\frac{b}{a+c+d}>\frac{b}{a+c+b+d};\frac{c}{b+c+d}>\frac{c}{a+b+c+d}\)

\(\frac{d}{a+b+c}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+c+b+d}\)

\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}>\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)

Vì \(\frac{a}{b+c+d}< 1\Rightarrow\frac{a}{b+c+d}< \frac{a+c}{b+c+a+d}\)

\(\frac{b}{c+d+a}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{b+c+d}< 1\Rightarrow\frac{c}{b+c+d}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{a+b+c}< 1\Rightarrow\frac{d}{a+b+c}< \frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< \frac{a+c}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow1< \frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< 2\)

Vậy a,b,c,d>0 thì \(1< \frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< 2\left(đpcm\right)\)