Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)Ta có: \(a^2+b^2+c^2\ge0\) .Dấu "=" xảy ra \(\Leftrightarrow a=b=c=0\)
Suy ra \(ab+bc+ca=-\dfrac{a^2+b^2+c^2}{2}\le-\dfrac{0}{2}=0\)
Dấu "=" xảy ra \(\Leftrightarrow a^2=b^2=c^2=0\Leftrightarrow a=b=c=0\)
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
Ta co:a^2+b^2+c^2-ab-bc-ca=0
<=>2(a^2+b^2+c^2-ab-bc-ca)=0
<=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ca+c^2)=0
<=>(a-b)^2+(b-c)^2+(a-c)^2=0
<=>a=b=c.
Ta co:a^2+b^2+c^2-ab-bc-ca=0
<=>2(a^2+b^2+c^2-ab-bc-ca)=0
<=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ca+c^2)=0
<=>(a-b)^2+(b-c)^2+(a-c)^2=0
<=>a=b=c
Áp dụng AM-GM:
\(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{0}{3}=0\)