Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Bddt đã cho được viết dưới dạng
\(a^3+b^3+\left(2c\right)^3\ge a^2b+b^2.\left(2c\right)+\left(2c\right)^2.a\)
Bđt trên luôn đúng vì đó là bđt Schur bậc 3 cho 3 số a ; b và 2c
P/S: tự lên mạng mà search Schur bậc 3 nha ^^
Cho a,b,c>0 CMR
\( \frac{a^3}{a+2b}+ \frac{b^3}{b+2c}+ \frac{c^3}{c+2a} \ge \frac{a^2+b^2+c^2}{3} \)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\text{VT}=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\geq \frac{(a^2+b^2+c^2)^2}{a^2+2ab+b^2+2bc+c^2+2ac}\)
\(\Leftrightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{(a+b+c)^2}\) (1)
Theo hệ quả của BĐT AM-GM thì ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\Leftrightarrow 3(a^2+b^2+c^2)\geq (a+b+c)^2\) (2)
Từ \((1),(2)\Rightarrow \text{VT}\geq \frac{a^2+b^2+c^2}{3}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c>0\)
TA có \(a^3+b^3+c^3\ge3abc\Rightarrow-a^3-b^3-c^3\le-3abc\)
Cần chứng minh \(a^2b+b^2c+c^2a+ca^2+bc^2+ab^2-3abc\ge0\)
\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)-3abc\)
\(\ge abc+abc+abc-3abc=0\)
Ta có:
\(a^3+b^3+c^3\)
\(=\left(\frac{1}{3}a^3+\frac{1}{3}a^3+\frac{1}{3}b^3\right)+\left(\frac{1}{3}b^3+\frac{1}{3}b^3+\frac{1}{3}c^3\right)+\left(\frac{1}{3}c^3+\frac{1}{3}c^3+\frac{1}{3}a^3\right)\)
Áp dụng bất đẳng thức Cô-si cho 3 số không âm ta có:
\(\frac{1}{3}a^3+\frac{1}{3}a^3+\frac{1}{3}b^3\ge3\sqrt[3]{\frac{a^3}{3}\frac{a^3}{3}\frac{b^3}{3}}=\frac{3a^2b}{3}=a^2b\)
Tương tự:
\(\frac{1}{3}b^3+\frac{1}{3}b^3+\frac{1}{3}c^3\ge b^2c\)
\(\frac{1}{3}c^3+\frac{1}{3}c^3+\frac{1}{3}a^3\ge c^2a\)
Cộng vế theo vế ta đc:
\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Dấu "=" xảy ra khi và chỉ khi a=b=c
Để ý thì thấy đa thức hoán vị: Vì nếu đặt \(f\left(a;b;c\right)=VT-VP\) thì \(f\left(a;b;c\right)=f\left(b;c;a\right)=f\left(c;a;b\right)\) vì vậy ta có thể giả sử \(a=max\left\{a,b,c\right\}\)
\(VT-VP=c\left(\Sigma_{cyc}a^2-\Sigma_{cyc}ab\right)+a\left(a-b\right)\left(a-c\right)+b\left(b-c\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=c\)