Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dự đoán của chúa Pain A=B=C=1 thế thôi éo nói nhiều làm j :)
áp dụng cô si ta có
\(\frac{3}{a+b+c}+\frac{\left(a+b+C\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{\left(a+b+c\right).3}}=2.\)
ÁP DỤNG co si tiếp tao có \(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}=}=4\)
theo cô si ta có \(a+B+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\frac{9}{a+b+c}\ge2\sqrt{3}+4\)
\(3.\left\{\frac{3}{\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{3}\right\}\ge3.\left\{2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}\right\}=6\)
từ 1 và 2 ta được
\(6\ge2+4\)
bây giờ mày thử ấn máy tính đi xem 2+4= bao nhiêu rồi tích cho tao nhé xDDDDD
bạn ơi cái chỗ \(\frac{9}{a+b+c}\ge2\sqrt{3}+4.\) là t viết nhầm nhé sủa lại thành \(\frac{9}{a+b+c}\ge2+4\) nhé
Áp dụng bđt Bunhia-cốp-xki ở dạng phân thức, ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\dfrac{9}{2}\)( vì a+b+c=1)
Dấu bằng xảy ra \(\Leftrightarrow\dfrac{1}{a+b}=\dfrac{1}{b+c}=\dfrac{1}{c+a}\Leftrightarrow a+b=b+c=c+a\Leftrightarrow a=b=c=\dfrac{1}{3}\)(vì a+b+c=1)
Ta có: \(a,b,c>0\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{\left(1+1+1\right)^2}{a+b+c+a+b+c}=\frac{3^2}{2\left(a+b+c\right)}=\frac{9}{2.1}=\frac{9}{2}\)
đpcm
Tham khảo nhé~
kudo shinichi nêú dùng kỹ thuật ghép cặp nghịch đảo cho 3 số thì sao bn
BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )
Vậy.......
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)
\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)
Cộng vế với vế ta có đpcm
\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)
\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)
\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)
\(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)
\(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)
\(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)
\(2.\) \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\ge\frac{b}{1+b}+\frac{c}{1+c}\)
\(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\) \(1\ge8abc\)
\(\Leftrightarrow\) \(abc\ge\frac{1}{8}\left(đpcm\right).\)
Cần sửa đề : cho \(a\ge b\ge c>0\).
Áp dụng BĐT Cauchy-Schwarz:
\(VT=\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ca+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1}{2\cdot\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Theo BĐT Cô si,ta có:
\(a+b+c\ge3\sqrt[3]{abc}\) (1)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) (2)
Nhân theo vế (1) và (2),ta có:\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Chia cả hai vế cho abc,ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}^{\left(đpcm\right)}\)
Hoặc:
Áp dụng BĐT: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}=\frac{2^2}{a+b}+\frac{1}{c}\ge\frac{\left(2+1\right)^2}{a+b+c}=\frac{9}{a+b+c}^{\left(đpcm\right)}\) (BĐT Svac)