Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
= \(a.\frac{a}{b+c}+b.\frac{b}{a+c}+c.\frac{c}{a+b}\)
=\(a.\frac{a}{b+c}+1-1+b.\frac{b}{a+c}+1-1+c.\frac{c}{a+b}+1-1\)
= \(\frac{a\left(a+b+c\right)}{b+c}-a+\frac{b\left(a+b+c\right)}{a+b}-b+\frac{c\left(a+b+c\right)}{a+b}-c\)
= \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
= (a+b+c) - (a+b+c) = 0
1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Leftrightarrow\left(\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\right).\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a}{\left(a-b\right)\left(b-c\right)}+\frac{a}{\left(c-a\right)\left(b-c\right)}+\frac{b}{\left(c-a\right)\left(a-b\right)}+\frac{b}{\left(c-a\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a\left(c-a\right)+a.\left(a-b\right)+b.\left(a-b\right)+b.\left(b-c\right)+c.\left(b-c\right)+c.\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{ac-a^2+ab-ac+ba-b^2+b^2-bc+bc-c^2+c^2-ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+0=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
đpcm
Ta có:
\(\frac{a^2}{b^2}+1\ge2.\frac{a}{b}\)
\(\frac{b^2}{c^2}+1\ge2.\frac{b}{c}\)
\(\frac{c^2}{a^2}+1\ge2.\frac{c}{a}\)
Cộng vế theo vế ta được
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-3\)
\(\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\sqrt{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-3=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Dấu = xảy ra khi a = b = c
Ta co: \(\frac{a^2}{b^2}\ge\frac{a}{b}\); \(\frac{b^2}{c^2}\ge\frac{b}{c}\);\(\frac{c^2}{a^2}\ge\frac{c}{a}\)\(\Rightarrow dpcm\)
Có :a^2/b+c + b^2/c+a + c^2/a+b
= a.(a/b+c) + b.(b/c+a) + c.(c/a+b)
= a.(a/b+c + 1 - 1) + b.(b/c+a + 1 - 1) + c.(c/a+b + 1 - 1)
= a. a+b+c/b+c + b. a+b+c/c+a + c. a+b+c/a+b - (a+b+c)
= (a+b+c).(a/b+c + b/c+a + c/a+b) - (a+b+c)
= (a+b+c)-(a+b+c)
= 0
=> ĐPCM
Tk mk nha
Áp dụng bất đẳng thức Cô-si:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge\frac{2a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{c}\)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\)
Cộng từng vế: \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
<=> \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)
Tương tự: \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế:
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Cảm ơn bạn.