Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
![](https://rs.olm.vn/images/avt/0.png?1311)
Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)
Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)
Và lượng trên tử bé hơn bằng \(ab+bc+ca\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo
Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)^2}{2a^2+bc}\le\left(a+b+c\right)^2\)
Ta có: \(\frac{\left(ab+bc+ca\right)^2}{2a^2+bc}\le\frac{\left(ab+ca\right)^2}{2a^2}+\frac{\left(bc\right)^2}{bc}=\frac{\left(b+c\right)^2}{2}+bc\)
Tương tự rồi cộng lại ta thu được:
\(L.H.S\le\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{2}+ab+bc+ca\)
\(=\frac{2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)}{2}+ab+bc+ca\)\(=\left(a+b+c\right)^2\)
P/s: Nhìn đơn giản chứ nó là bao nhiêu ngày suy nghĩ đấy ạ:( Chả biết đúng hay sai nữa:v
Áp dụng bánh Cô-si ta có:
\(a^2+bc\ge2a\sqrt{bc};b^2+ac\ge2b\sqrt{ac};c^2+ab\ge2c\sqrt{ab}\)
\(\Rightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2}\left(\frac{1}{a\sqrt{bc}}+\frac{1}{b\sqrt{ac}}+\frac{1}{c\sqrt{ab}}\right)\)
\(=\frac{1}{2}\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{abc}\le\frac{1}{2}\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{abc}=\frac{a+b+c}{2abc}\)
Dấu'=' xảy ra <=> a=b=c