Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{b+c}{\left(a-b\right)\left(a-c\right)}+\frac{c+a}{\left(b-c\right)\left(b-a\right)}+\frac{a+b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{\left(b+c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{\left(c+a\right)\left(c-a\right)}{\left(b-c\right)\left(b-a\right)\left(c-a\right)}+\frac{\left(a+b\right)\left(a-b\right)}{\left(c-a\right)\left(c-b\right)\left(a-b\right)}\)
\(=\frac{b^2-c^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{c^2-a^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{a^2-b^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\left(ĐPCM\right)\)
Bạn tham khảo:
https://hoc24.vn/hoi-dap/question/862431.html
Sửa đề: a,b,c,d>0
C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)
Áp dụng BĐT AM-GM ta có:
\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)
Dấu " = " xảy ra <=> a+c=b+d
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
CTV mới được làm à :V
Đặt \(x=\frac{a}{b-c}\) ; \(y=\frac{b}{c-a}\) ; \(z=\frac{c}{a-b}\)
Ta có : \(\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\left(=\frac{2abc}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right)\)
\(\Rightarrow xyz+zy+yz+zx+z+y+z+1\)
\(=xyz-\left(xy+yz+zx\right)+x+y+z-1\)
\(\Rightarrow2\left(xy+yz+zx\right)=-2\)
\(\Rightarrow xy+yz+zx=-1\)
Vậy ................
Mình làm theo cô hướng dẫn sai thì thôi nha .
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
Áp dụng BĐT AM-GM cho 3 bộ số thực \(a+\frac{b}{ac}\), \(b+\frac{c}{ab}\)và \(c+\frac{a}{bc}\)
Ta có:
\(a+\frac{b}{ac}\ge2\sqrt{\frac{ab}{ac}}=2\sqrt{\frac{b}{c}}\)(1)
\(b+\frac{c}{ab}\ge2\sqrt{\frac{bc}{ab}}=2\sqrt{\frac{c}{a}}\)(2)
\(c+\frac{a}{bc}\ge2\sqrt{\frac{ac}{bc}}=2\sqrt{\frac{a}{b}}\)(3)
Nhân vế theo vế (1),(2) và (3)
\(VT\ge8\sqrt{\frac{abc}{abc}}=8\)
Vậy ....................
hợp lí , cảm ơn bn nha