K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

min của \(A=a^2+b^2+c^2-2\sqrt{3abc}\) chứ nhỉ

19 tháng 6 2019

à nhầm

24 tháng 11 2021

\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)

24 tháng 11 2021

\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

2 tháng 12 2021

Câu 1

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Câu 2:

\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24

NV
28 tháng 1 2022

\(\left\{{}\begin{matrix}a;b;c\ge0\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow a\left(a-1\right)\le0\Rightarrow a^2\le a\)

\(\Rightarrow\sqrt{2a^2+3a+4}=\sqrt{a^2+a^2+3a+4}\le\sqrt{a^2+a+3a+4}=a+2\)

Tương tự và cộng lại:

\(\Rightarrow M\le a+2+b+2+c+2=7\)

\(M_{max}=7\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

NV
8 tháng 5 2021

Bạn tham khảo, số liệu chỉ khác nhau đúng 1 chút xíu còn cách làm tương tự:

cho a,b,c dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\).CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2... - Hoc24

NV
24 tháng 3 2023

Đặt \(\left\{{}\begin{matrix}a+c=x>0\\b+c=y>0\end{matrix}\right.\) \(\Rightarrow xy=1\)

\(A=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}\)

\(=\dfrac{1}{\left(x-y\right)^2}+x^2+y^2-2xy+2xy\)

\(=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2}}+2=4\)

24 tháng 3 2023

thầy ơi tại sao xy>1 ạ 

12 tháng 12 2019

\(1=a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow2P=2a^2+2b^2+2c^2=\frac{2}{a+b+c}+2ab+2bc+2ca\)

\(\Rightarrow3P=3a^2+3b^2+3c^2=\frac{2}{a+b+c}+a^2+b^2+c^2+2ab+2bc+2ca\)

\(=\frac{1}{a+b+c}+\frac{1}{a+b+c}+\left(a+b+c\right)^2\ge3\sqrt[3]{\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}=3\)

\(\Rightarrow P\ge1\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị.