Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
Từ giả thiết, ta có
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\Rightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)
=>\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)
Tháy vào, ta có M=\(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}{\sqrt{b}+\sqrt{c}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}{\sqrt{a}+\sqrt{c}}\)
=\(\frac{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{c}}\)
=\(\sqrt{a}+\sqrt{c}+\sqrt{b}+\sqrt{a}+\sqrt{c}+\sqrt{b}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=4\)
Vậy M=4
^_^
Bạn tham khảo:
Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến
Cho a,b,c>1. Tìm GTNN của:
\(\frac{a}{\sqrt{b}-1}\)+\(\frac{b}{\sqrt{c}-1}\)+\(\frac{c}{\sqrt{a}-1}\)
bài n t vừa làm mà, vào link này nhé
https://olm.vn/hoi-dap/question/1129328.html
từ giả thiết, ta có \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\Rightarrow xy+yz+xz=1\)
Ta có \(\frac{1}{\sqrt{a^2+1}}=\frac{1}{\sqrt{\frac{1}{x^2}+1}}=\frac{1}{\sqrt{\frac{1+x^2}{x^2}}}=\frac{x}{\sqrt{x^2+xy+yz+zx}}\) =\(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Áp dụng BĐT cô-si, ta có \(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự, rồi cộng lại, ta có
A\(\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
=> A<=3/2
Dấu = xảy ra <=> \(a=b=c=\sqrt{3}\)
^_^