Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\dfrac{a^3}{\left(1-a\right)^2}+\dfrac{1-a}{8}+\dfrac{1-a}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)
Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{b^3}{\left(1-b\right)^2}+\dfrac{1-b}{8}+\dfrac{1-b}{8}\ge\dfrac{3b}{4}\\\dfrac{c^3}{\left(1-c\right)^2}+\dfrac{1-c}{8}+\dfrac{1-c}{8}\ge\dfrac{3c}{4}\end{matrix}\right.\)
\(\Rightarrow P+\dfrac{6-2\left(a+b+c\right)}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow P\ge\dfrac{1}{4}\)
Vậy \(P_{min}=\dfrac{1}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Ta chứng minh \(P\ge-\dfrac{4}{3}\) hay
\(\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}-\dfrac{1}{10}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{3}{4}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\dfrac{131}{60}\ge0\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2-3\left(a^2+b^2+c^2\right)}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3-3abc}{4abc}-\dfrac{131\left(a^2+b^2+c^2-ab-bc-ca\right)}{60\left(ab+bc+ca\right)}\ge0\)
\(\LeftrightarrowΣ_{cyc}\dfrac{-\left(a-b\right)^2}{30\left(a^2+b^2+c^2\right)}+Σ_{cyc}\dfrac{\dfrac{a+b+c}{2}\left(a-b\right)^2}{4abc}-Σ_{cyc}\dfrac{\dfrac{131}{2}\left(a-b\right)^2}{60\left(ab+bc+ca\right)}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(a-b\right)^2\left(\dfrac{\dfrac{a+b+c}{2}}{4abc}-\dfrac{\dfrac{131}{2}}{60\left(ab+bc+ca\right)}-\dfrac{1}{30\left(a^2+b^2+c^2\right)}\right)\ge0\)
Dự đoán dấu "=" khi \(a=b=c \Rightarrow P=28\)
Ta sẽ chứng minh \(P=28\) là GTNN
Thật vậy ta có: \(P=\dfrac{ab+bc+ca}{a^2+b^2+c^2}-1+\dfrac{\left(a+b+c\right)^3}{abc}-27\ge0\)
\(\Leftrightarrow\dfrac{ab+bc+ca-\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}+\dfrac{\left(a+b+c\right)^3-27abc}{abc}\ge0\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^3-27abc}{abc}-\dfrac{2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)}{2\left(a^2+b^2+c^2\right)}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\dfrac{\dfrac{a+b+7c}{2}\cdot\left(a-b\right)^2}{abc}-\dfrac{\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)}\right)\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\left(\dfrac{a+b+7c}{2abc}-\dfrac{1}{2\left(a^2+b^2+c^2\right)}\right)\right)\ge0\) *Đúng*
Vậy ...
Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)
\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)
\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)
Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế
\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)
\(M=\dfrac{\left(ab\right)^2}{abc^2\left(a+b\right)}+\dfrac{\left(ac\right)^2}{acb^2\left(a+c\right)}+\dfrac{\left(bc\right)^2}{a^2bc\left(b+c\right)}\)
\(M\ge\dfrac{\left(ab+bc+ca\right)^2}{2abc\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2abc}=\dfrac{\left(a+b+c\right)\left(ab+bc+ca\right)}{6abc}\ge\dfrac{9abc}{6abc}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)