Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABC có
AB=AC(gt)
=> tam giác ABC cân tại A
\(\widehat{B}=\widehat{C}=\dfrac{180^o-\widehat{A}}{2}=\dfrac{180^o-80^o}{2}=50^o\)
a) Tam giác ABC cân tại A nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).
Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ - 70^\circ - 70^\circ = 40^\circ \).
b) Xét tam giác vuông ADB và tam giác vuông AEC có:
AB = AC (tam giác ABC cân);
\(\widehat A\) chung.
Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).
c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.
Xét hai tam giác vuông AFB và AFC có:
AB = AC (tam giác ABC cân);
AF chung.
Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).
Vậy tia AH là tia phân giác của góc BAC.
a/ ^B+^C=180-^A=180-120=60
^C=(60-30):2=15 => ^B=60-15=30
b/ Đường trung trực của BC cắt BC tại H
+Xét hai tg vuông BHE và tg vuông CHE có
HE chung và HB=HC => tg BHE=tg CHE (Hai tam giác vuông có hai cạnh góc vuông bằng nhau
=> BE=CE (1) và ^HBE=^HCE=45 (2)
+ Xét hai tg vuông HBD và tg vuông HCD có
HD chung và HB=HC => tg HBD=tg HCD (Hai tam giác vuông có hai cạnh góc vuông bằng nhau)
=> BD=CD (3) và ^HBD=^HCD=15 (4)
Từ (2) và (4) => ^EBD=^ECD=45-15=30 (5)
c/ Xét tg BED và tg ECD
Từ (1) (3) và (5) => tg BED=tg ECD (c.g.c)