Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a-b\right)^2+2=?\) hở bạn thiếu đề hay sao ấy
a)(a+b)3=a3+b3+3a2b+3ab2
(a+b)3=a3+b3+3ab(a+b)
thay a+b=10 và ab=4 ta được:
103=a3+b3+3.4.10
1000=a3+b3+120
=>a3+b3=1000-120
=880
b)(a+b)2=a2+2ab+b2
thay a+b=10 và ab=4
ta được :
102=a2+b2+2.4
100=a2+b2=8
=>a2+b2=100-8=92
=>(a2+b2)2=a4+2a2b2+b4
(a2+b2)2=a4+b4+2(ab)2
thay a2+b2=92 và ab=4 ta được
922=a4+b4+2.42
8464=a4+b4+32
=>a4+b4=8464-32
=8432
c)(a2+b2)2(a3+b3)=a5+a2b3+a3b2+b5
(a2+b2)(a3+b3)=a5+ab(a+b)+b5
thay a+b=10;a2+b2=92 và a3+b3=880;ab=4
ta được:
92.880=a5+4.10+b5
80960=a5+b5+40
=>a5+b5=80960-40
=80920
M = a2 + b2 + (a+b)2 = a2 + b2 + a2+ 2ab + b2 = 2a2 + 2b2 + 2ab = 2(a2 + ab+ b2) = 2.7 = 14
M = a2 + b2 + (a+b)2 = 2a2 + 2b2 + 2ab = 2(a2 + ab+ b2) =14
Tương tự với a4 + b4 + (a+b)4
a) \(\left(a-b\right)^2=3\)\(\Rightarrow a^2-2ab+b^2=3\)
mà \(a^2+b^2=8\)\(\Rightarrow8-2ab=3\)
\(\Rightarrow2ab=5\)\(\Rightarrow ab=\frac{5}{2}\)
Vậy \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
mà \(a-b=2\)và \(a+b=4\)
\(\Rightarrow a^2-b^2=2.4=8\)
Vậy \(a^2-b^2=8\)
a) Ta có: \(\hept{\begin{cases}a^2+b^2=8\\\left(a-b\right)^2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=8\\a^2-2ab+b^2=3\end{cases}}\)
=> \(a^2+b^2-\left(a^2-2ab+b^2\right)=8-3\)
<=> \(2ab=5\)
=> \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)=2.4=8\)
lm lộn đề nên hơi chậm xíu^^
a) vì a+b=10
=> \(\left(a+b\right)^2=10^2=100\)
\(< =>a^2+2ab+b^2=100\)
\(< =>a^2+b^2+2.4=100\)(vì ab=4)
\(< =>a^2+b^2=100-8\)
\(< =>a^2+b^2=92\)
b) theo câu a ta có \(a^2+b^2=92\)
\(< =>\left(a^2+b^2\right)^2=92^2=8464\)
\(< =a^4+b^4+2a^2b^2=8464\)
\(< =>a^4+b^4+2.\left(ab\right)^2=8464\)
\(< =>a^4+b^4+2.4^2=8464\)
\(< =>a^4+b^4=8464-32\)
\(< =>a^4+b^4=8432\)
a)AM-GM:
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4\cdot a^4\cdot b^4\cdot c^4}=4a^2bc\)
\(a^4+b^4+b^4+c^4\ge4ab^2c\)
\(a^4+b^4+c^4+c^4\ge4abc^2\)
Cộng vế theo vế ta được:
4\(\left(a^4+b^4+c^4+d^4\right)\ge4a^2bc+4ab^2c+4abc^2\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge abc\left(a+b+c\right)\)
1 cách khác: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
\(2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge2\sqrt{a^2b^4c^2}+2\sqrt{b^2a^2c^4}+2\sqrt{a^4b^2c^2}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge ab^2c+abc^2+a^2bc=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
tương tự với câu b
10016