Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b=10\) và \(ab=4\)
1. Có: \(A=a^2+b^2=\left(a+b\right)^2-2ab=10^2-2.4=92\)
2. \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=10^3-3.4.10=880\)
3. \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=92^2-2.4^2=8432\)
4. \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)=92.880-4^2.10=80800\)
Ta có \(a-b=5\Rightarrow\left(a-b\right)^2=25\Rightarrow a^2+b^2=25+2ab=25+2\cdot2=29\) (Do ab=2)
\(B=3\left[\left(a^2+b^2\right)^2-2a^2b^2\right]+2\left[\left(a-b\right)\left(a^4+b^4+a^3b^2+a^2b^3\right)\right]\)
= \(3\left[29^2-2\cdot4\right]+2\left\{5\left[\left(a^2+b^2\right)^2-2a^2b^2+ab\left(a^2+b^2\right)\right]\right\}\)
= 3\(\cdot833+10\left[29^2-2\cdot4+2\cdot29\right]\) \(=2499+10\cdot891=11409\)
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
\(A=a^2+b^2=\left(a+b\right)^2-2ab=3^2-2.\left(-5\right)=19\)
\(B=a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=19^2-2.\left(-5\right)^2=311\)
Ta có
a + b = 3
<=> a2 + 2ab + b2 = 9
<=> 2ab = 9 - 7 = 2
<=> ab = 1
Ta lại có
a4 + b4 = (a2 + b2)2 - 2a2 b2
= [(a + b)2 - 2ab]2 - 2a2 b2
= (32 - 2)2 - 2 = 47
Ta có:\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)
\(=7^2-2a^2b^2\)
Bn ra sai đề bài hay sao
- a) Ta có: a + b = 5 => a2 + b2 = 25 - 2ab
- Mặt khác: a3 + b3 = 35 => (a + b)( a^2 + b^2 - ab) = 5( 25 - 2ab - ab) = 125 - 15ab = 35
- => ab = 6
Bạn chỉ cần thay vào và làm câu b tương tự là đc nhé ^^
a2-b2=(a-b)(a+b)=5.3=15 a-b-a-b=5-3=2 => b=-1 và a=4
a4-b4=(a2-b2)(a2+b2)=(a-b)(a+b)(a2+b2)=5.3.17=225