Cho a b 3 c 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

Ta có

a b 3 c 2 − a 2 b 2 c 2 + a b 2 c 3 − a 2 b c 3 =   a b c 2 ( b 2   –   a b   +   b c   –   a c )     =   a b c 2 [ ( b 2   –   a b )   +   ( b c   –   a c ) ]     =   a b c 2 [ b ( b   –   a )   +   c ( b   –   a ) ]     =   a b c 2 ( b   +   c ) ( b   –   a )

Vậy ta cần điền b – a

Đáp án cần chọn là: A

11 tháng 7 2018

a) \(\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-\left(x^3-3x^2y+3xy^2-y^3\right)-2y^3\)

\(=x^3+3x^3y+3xy^3+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)

\(=6x^2y\)

b) \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=a^3-3a^2b+3ab^2-b^3+\left(b-c\right)^3+\left(c-b\right)^3\)

\(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3ab^2-c^3+\left(c-d\right)^3\)

\(=a^3-3a^3b+3ab^2-b^3+b^3-3b^3c+3bc^2-c^3+c^3-3c^3b+3cb^3-b^3\)

\(=-b^3+3ab^2-3a^2b+a^3\)

11 tháng 7 2018

Mọi người giúp mk với nha, bữa trước mk đi chơi hè về nên bỏ qua bài này về lý thuyết nên chẳng hiểu gì cả, các bạn giúp mk giải và giảng cũng như chú thích các bước làm và ứng dụng hằng đẳng thức nào để giúp mk hiểu bài hơn và hoàn thành bài tập về nhà với nha, mk xin cảm ơn trước và nếu các bạn làm đúng thì mk sẽ k đúng và kết bạn với các bạn nha!

Hihihi!!!^_^ Mong các bạn giúp đỡ mk!!!!!!!!!!!!!!!

4 tháng 4 2020

bài này chắc có câu a đúng ko

ta có \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{c}=\frac{c}{b}=\frac{b}{a}\)

\(\Leftrightarrow a^4c^2+b^4a^2+c^4b^2=abc\left(a^2c+c^2a+b^2c\right)\)

đặt \(x=a^2c;y=b^2a;z=c^2b\)ta được

\(x^2+y^2+z^2=xy+yz+zx\)

áp dụng kết quả của câu a ta đc

\(\left(x-y\right)^2+\left(y-2\right)^2+\left(z-x\right)^2=0=>x=y=z\)

\(=>a^2c=b^2a=c^2b=>ac=b^2;bc=a^2;ab=c^2\)

=>a=b=c(dpcm)

4 tháng 4 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)

Đặt \(\frac{a}{b}=x;\frac{b}{c}=y;\frac{c}{a}=z\)

Khi đó:\(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Mà \(\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0;\left(z-x\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Dấu "=" xảy ra tại x=y=z hay a=b=c

Suy ra điều fải chứng minh

10 tháng 8 2019

\(1.\)

\(a,\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)

10 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)

b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)

20 tháng 8 2020

a hoặc b hoặc c là 1

còn lại là 0

vì a ngũ 2 + b ngũ 2 + c ngũ 2 = a ngũ 3 + b ngũ + c ngũ 3=1 mà 1= 1+0+0 nên ta có như kia(không thể là số thập phân vì số thập phân khi ngũ khác nhau thì tổng khác nhau mà cái này tổng bằng nhau)

- 0 ngũ bao nhiêu cx bằng 0 , 1 ngũ bao nhiêu cx bằng 1

mà a hay hay c bằng 1 hoặc ko đều ko quan trọng chỉ cần bt 1 số là 1 còn 2 số còn lại là 0

nên tổng a ngũ 2 + b ngũ 9+ c ngũ 2019 = bằng 1(0 ngũ bao nhiêu cx bằng 0 , 1 ngũ bao nhiêu cx bằng 1)

chúc học tốt

20 tháng 8 2020

Cách trình bày như nào ạ? tớ thấy nếu thử như vậy không hợp lí lắm, cậu có cách khác không ạ!?

giúp tớ với!

14 tháng 11 2019

Xơi luôn nha:v

Có: \(\left(a^2+b^2+c^2\right)\left(5^2+1^2+1^2\right)\ge\left(5a+b+c\right)^2\)

Do đó \(A\ge\frac{\left(5a+b+c\right)^2}{27}\). Lại có: \(5a+b+c=4a+\left(a+b+c\right)\ge4.5+7=27\)

Từ đó \(A\ge27\)

True?

14 tháng 11 2019

Từ \(a\ge5\)và \(a+b\ge6\)\(\Rightarrow b\ge1\)

Từ \(a+b\ge6\)và \(a+b+c\ge7\)\(\Rightarrow c\ge1\)

\(\Rightarrow A=a^2+b^2+c^2\ge5^2+1^2+1^2=27\)

Dấu = xảy ra khi \(a=5,b=c=1\)

Vậy \(minA=27\Leftrightarrow a=5,b=c=1\)

9 tháng 10 2019

Xét: \(9M=\Sigma\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{3}{2}+\Sigma\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-3+\frac{9}{2}\)

\(=\Sigma\left(\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{1}{2}\right)+\Sigma\left(\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-1\right)+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\frac{b^2+c^2-2a^2}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2ab+2bc+2ca-4a^2-b^2-c^2}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\frac{\left(b-a\right)\left(b+a\right)+\left(c-a\right)\left(c+a\right)}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2a\left[\left(b-a\right)+\left(c-a\right)\right]}{4a^2+b^2+c^2}-\Sigma\frac{\left(b-c\right)^2}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\left(\frac{\left(a-b\right)\left(a+b\right)}{a^2+4b^2+c^2}-\frac{\left(a-b\right)\left(b+a\right)}{4a^2+b^2+c^2}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\left(a-b\right)\left(a+b\right)\left(\frac{3a^2-3b^2}{\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\Sigma\frac{3\left(a-b\right)^2\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{1}{a^2+b^2+4c^2}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2\left(a^2+b^2+4c^2\right)-2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(a^2+b^2+4c^2\right)}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)Ai đó làm tiếp giúp em vs:( Em chỉ nghĩ ra được tới đây thôi.

9 tháng 10 2019

Ta có:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;a^2+c^2\ge2\sqrt{a^2c^2}=2ac;a^2+a^2\ge2\sqrt{a^2a^2}=2a^2\)

Khi đó:

\(4a^2+b^2+c^2\ge2a\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{4a^2+b^2+c^2}\le\frac{1}{6a}\)

Tương tự:

\(\frac{1}{a^2+4b^2+c^2}\le\frac{1}{6b};\frac{1}{a^2+b^2+4c^2}\le\frac{1}{6c}\cdot\)

\(\Rightarrow M\le\frac{1}{6}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{abc}\cdot\frac{1}{6}\) \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

Theo BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Khi đó \(M\le\frac{3}{1}\cdot\frac{1}{6}=\frac{1}{2}\)

Dấu "=" xảy ra tại \(a=b=c=1\)

P/S:Is that true ??