Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo ht Viet :
\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)
Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1)
(+) tính x1 - x2
TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)
Rút gọn => x1 - x2 sau đó thay vào (1)
b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM )
Xét a khác 0 pt là pt bậc 2
\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)
LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên
a) DK : x > 0; x khác 1
\(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
c ) \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)
TH1: Q = 0 => x = 0 loại
TH2: Q khác 0
(1) là phương trình bậc 2 với tham số Q ẩn x.
(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)
<=> \(-3Q^2+4Q+4\ge0\)
<=> \(-\frac{2}{3}\le Q\le2\)
Vì Q nguyên và khác 0 nên Q = 1 hoặc Q = 2
Với Q = 1 => \(x-3\sqrt{x}+1=0\)
<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x
Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.
Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.
Bài 1:
ĐKXĐ: \(1\leq x\leq 3\)
Ta có:
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)
\(\Leftrightarrow \sqrt{x-1}-1+\sqrt{3-x}-1=3x^2-4x-4\)
\(\Leftrightarrow \frac{x-2}{\sqrt{x-1}+1}+\frac{2-x}{\sqrt{3-x}+1}=(x-2)(3x+2)\)
\(\Leftrightarrow (x-2)\left(3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}\right)=0(1)\)
Với mọi $1\leq x\leq 3$ ta luôn có \(3x+2\geq 5; \frac{1}{\sqrt{3-x}+1}>0; \frac{1}{\sqrt{x-1}+1}\leq 1\)
\(\Rightarrow 3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}>0(2)\)
Từ (1);(2) suy ra \(x-2=0\Rightarrow x=2\)
Vậy $x=2$ là nghiệm duy nhất của pt đã cho.
Bài 2:
Với mọi $x,y,z$ nguyên không âm thì :
\(2014^z=2012^x+2013^y\geq 2012^0+2013^0=2\Rightarrow z\geq 1\)
Với $z\geq 1$ thì ta luôn có \(2012^x+2013^y=2014^z\) là số chẵn
Mà \(2013^y\) luôn lẻ nên \(2012^x\) phải lẻ. Điều này chỉ xảy ra khi $x=0$
Vậy $x=0$
Khi đó ta có: \(1+2013^y=2014^z\)
Nếu $z=1$ thì dễ thu được $y=1$
Nếu $z>1$:
Ta có: \(2014^z\vdots 4(1)\)
Mà \(2013\equiv 1\pmod 4\Rightarrow 1+2013^y\equiv 1+1\equiv 2\pmod 4\)
Tức \(1+2013^y\not\vdots 4\) (mâu thuẫn với (1))
Vậy PT có nghiệm duy nhất \((x,y,z)=(0,1,1)\)