K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

a − b = 29 + 12 5 − 2 5 = 3 + 2 5 2 − 2 5 = 3 A = a 3 − b 3 + a 2 + b 2 − 11 a b + 2015 = ( a − b ) ( a 2 + b 2 + a b ) + a 2 + b 2 − 11 a b + 2015 = 3 ( a 2 + b 2 + a b ) + a 2 + b 2 − 11 a b + 2015 = 4 ( a 2 − 2 a b + b 2 ) + 2015 = 4 a - b 2 + 2015 = 2051

2 tháng 12 2023

Ta có: \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\) (1)

Lại có: \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\) 

\(=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-2\sqrt{5}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(=2\sqrt{5}+3-2\sqrt{5}\)

\(=3\)

\(\Rightarrow a=b+3\)

Thay \(a=b+3\) vào (1), ta được:

\(\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2024\)

\(=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2024\)

\(=b\left(b^2+6b+9\right)+4\left(b^2+6b+9\right)-b^3-10b^2-33b+2024\)

\(=b^3+6b^2+9b+4b^2+24b+36-b^3-10b^2-33b+2024\)

\(=\left(b^3-b^3\right)+\left(6b^2+4b^2-10b^2\right)+\left(9b+24b-33b\right)+\left(2024+36\right)\)

\(=2060\)

$\Rightarrow$ Chọn đáp án $C$.

2 tháng 12 2023

Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(\Rightarrow a-b=2\sqrt{5}+3-2\sqrt{5}\)

\(\Rightarrow a-b=3\)

Xét biểu thức : \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\)

\(=a^3+a^2-b^3+b^2-11ab+2024\)

\(=a^3-b^3+a^2+b^2-2ab-9ab+2024\)

\(=a^3-b^3-9ab+a^2-2ab+b^2+2024\)

\(=a^3-3ab\left(a-b\right)-b^3+\left(a-b\right)^2+2024\) vì \(a-b=3\)

\(=\left(a-b\right)^3+\left(a-b\right)^2+2024\)

\(=3^3+3^2+2024\)

\(=2060\)

\(\Rightarrow C\)

Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)

\(=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(=2\sqrt{5}+3-2\sqrt{5}\)

\(=3\).

\(\Rightarrow a=b+3\)

Thế vào A ta được :

\(A=\left(b+3\right)^2\left(b+4\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2017\)

\(=b^3+10b^2+33b+36-b^3+b^2-11b^2-33b+2017\)

\(=2053\)

1 tháng 1 2019

\(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}=\sqrt{9+2.3.2\sqrt{5}+20}-2\sqrt{5}=\sqrt{3^2+2.3.2\sqrt{5}+\left(2\sqrt{5}\right)^2}-2\sqrt{5}=\sqrt{\left(3+2\sqrt{5}\right)^2}-2\sqrt{5}=3+2\sqrt{5}-2\sqrt{5}=3\Leftrightarrow a=b+3\)

A=\(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2017=\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2017=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2017=b^3+4b^2+6b^2+24b+9b+36-b^3+b^2-11b^2-33b+2017=b^3+10b^2+9b+33b-b^3-10b^2-33b+2053=2053\Leftrightarrow A=2053\)

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

15 tháng 12 2023

a: \(A=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)

\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=5-1=4\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)

\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=-\dfrac{2}{\sqrt{x}+1}\)

c: Khi x=9 thì \(B=\dfrac{-2}{\sqrt{9}+1}=\dfrac{-2}{3+1}=-\dfrac{2}{4}=-\dfrac{1}{2}\)

d: |B|=A

=>\(\left|-\dfrac{2}{\sqrt{x}+1}\right|=4\)

=>\(\dfrac{2}{\sqrt{x}+1}=4\) hoặc \(\dfrac{2}{\sqrt{x}+1}=-4\)

=>\(\sqrt{x}+1=\dfrac{1}{2}\) hoặc \(\sqrt{x}+1=-\dfrac{1}{2}\)

=>\(\sqrt{x}=-\dfrac{1}{2}\)(loại) hoặc \(\sqrt{x}=-\dfrac{3}{2}\)(loại)

13 tháng 3 2022

1. Với x = 36
=> A= \(\dfrac{\sqrt{36}-2}{\sqrt{36}-1}\)=\(\dfrac{4}{5}\)
2. Với x >0, x ≠1
B=\(\dfrac{x-5}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}\)
B=\(\dfrac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. P=\(\dfrac{A}{B}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Ta có \(\sqrt{P}< \dfrac{1}{2}\)
=>P<\(\dfrac{1}{4}\)
=> \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)<\(\dfrac{1}{4}\)
=> \(4\left(\sqrt{x}-2\right)< \sqrt{x}+1\)
=> \(4\sqrt{x}-8< \sqrt{x}+1 \)
=> \(3\sqrt{x}< 9\)
=>\(\sqrt{x}< 3\)
=> x< 9
Lại có x ϵ Z => x ϵ {-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8}
Ta thử lại với x ≠ 1
=> x ϵ {-8,-7,-6,-5,-4,-3,-2,0,2,3,4,5,6,7,8}

a: Khi x=64 thì \(A=\dfrac{3\cdot8+1}{8+2}=\dfrac{25}{10}=\dfrac{5}{2}\)

b: \(B=\dfrac{2\sqrt{x}-4-\sqrt{x}+5}{x-4}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+2}\)

19 tháng 6 2023

a) Có:

 \(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)

19 tháng 6 2023

câu (b) cho đa thức P (x) = cái gì?