K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 5 2019

\(\frac{1}{a}+\frac{1}{b}=2\Rightarrow ab=\frac{a+b}{2}\Rightarrow\frac{a+b}{2}\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge2\)

\(Q\le\frac{1}{2\sqrt{a^4b^2}+2ab^2}+\frac{1}{2\sqrt{a^2b^4}+2a^2b}=\frac{1}{ab\left(a+b\right)}=\frac{2}{\left(a+b\right)^2}\le\frac{2}{2^2}=\frac{1}{2}\)

\(\Rightarrow Q_{max}=\frac{1}{2}\) khi \(a=b=1\)

26 tháng 5 2019

bạn dùng pp nào vậy có thể giảng cho mình đc không @@Nguyễn Việt Lâm

NV
12 tháng 7 2020

Bạn tham khảo:

Câu hỏi của Ngọc Ánh - Toán lớp 9 | Học trực tuyến

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

15 tháng 10 2020

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

26 tháng 2 2020

Áp dụng BĐT Cô - si ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\left(1\right)\)

Áp dụng BĐT trên ta được :
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow\left(\frac{1}{2a+b+c}\right)^2\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2\)

Chứng minh tương tự rồi cộng các vế lại cho nhau ta được :
\(A\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\frac{1}{16}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

\(\Rightarrow16A\le\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

\(=\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\frac{2}{\left(b+c\right)\left(a+b\right)}+\frac{2}{\left(a+c\right)\left(b+c\right)}\)

Đặt \(\left(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{c+a}\right)\rightarrow\left(x;y;z\right)\)

Khi đó \(16A\le2x^2+2y^2+2z^2+2xy+2yz+2zx\)

Ta có BĐT phụ sau :
\(xy+yz+zx\le x^2+y^2+z^2\) ( tự chứng minh ) (2)

Áp dụng ta được :

\(16A\le4x^2+4y^2+4z^2=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)
\(\Rightarrow4A\le\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\)

Từ (1) \(\Rightarrow\frac{1}{\left(x+y\right)^2}\le\frac{1}{16}\left(\frac{1}{x}++\frac{1}{y}\right)^2\)( bình phương 2 vế lên )

Áp dụng BĐT này ta được :
\(4A\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{16}\left(\frac{1}{b}+\frac{1}{c}\right)^2+\frac{1}{16}\left(\frac{1}{c}+\frac{1}{a}\right)^2\)

\(\Rightarrow64A\le\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{ac}+\frac{1}{a^2}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Áp dụng BĐT (2) ta được :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3+3=6\)

\(\Rightarrow A\le\frac{6}{32}=\frac{3}{16}\)

Dấu " = " xảy ra khi a=b=c=1

Dài quá đi

Chúc bạn học tốt !!

17 tháng 6 2019

Áp dụng bđt Cô-si có'

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(1)

Áp dụng bđt trên ta được

\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow\left(\frac{1}{2a+b+c}\right)^2\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2\)

Chứng minh tương tự rồi cộng các vế lại cho nhau ta được

\(A\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\frac{1}{16}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

\(\Rightarrow16A\le\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

               \(=\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\frac{2}{\left(b+c\right)\left(a+b\right)}+\frac{2}{\left(a+c\right)\left(b+c\right)}\)

Đặt \(\left(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{c+a}\right)\rightarrow\left(x;y;z\right)\)

Khi đó \(16A\le2x^2+2y^2+2z^2+2xy+2yz+2zx\)

Ta có bđt phụ sau : \(xy+yz+zx\le x^2+y^2+z^2\)(tự chứng minh) (2)

Áp dụng ta được

\(16A\le4x^2+4y^2+4z^2=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

\(\Rightarrow4A\le\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\)

Từ (1) \(\Rightarrow\frac{1}{\left(x+y\right)^2}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)(Bình phương 2 vế lên) 

Áp dụng bđt này ta được

\(4A\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{16}\left(\frac{1}{b}+\frac{1}{c}\right)^2+\frac{1}{16}\left(\frac{1}{c}+\frac{1}{a}\right)^2\)

\(\Rightarrow64A\le\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{ac}+\frac{1}{a^2}\)

\(\Rightarrow64A\le\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Áp dụng bđt (2) ta được \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3+3=6\)

\(\Rightarrow A\le\frac{6}{32}=\frac{3}{16}\)
Dấu "=" xảy ra tại a=b=c = 1

17 tháng 6 2019

#)Em thấy có link này có cách giải ngắn gọn hơn nek :

https://h.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+th%E1%BB%B1c+d%C6%B0%C6%A1ng+a,b,c+thay+%C4%91%E1%BB%95i+lu%C3%B4n+th%E1%BB%8Fa+m%C3%A3n+1/a2+++1/b2+++1/c2+=3.T%C3%ACm+Max+P+=+1/(2a+b+c)2++1(2b+a+c)2++1/(2c+a+b)2&id=394201

Ai cần link này ib e nhé ! e gửi cho chị #Diệp Song Thiên đã ^^

14 tháng 3 2018

Đặt A là biểu thức cần CM 

ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh ) 

Áp dụng BĐT quen thuộc x² + y² ≥ 2xy 

a^4 + b² ≥ 2a²b (1) 
b^4 + c² ≥ 2b²c (2) 
c^4 + a² ≥ 2c²a (3) 
 

14 tháng 3 2018

tiếp đi bạn huy

4 tháng 4 2017

Áp dụng BĐT AM-GM ta có:

\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)

\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)

\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)

Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)

\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)

\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)

Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=1\)