K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nguyễn Châu Tuấn Kiệt ông có thể giúp tui bài này đc ko

19 tháng 3 2019

bài này tôi đăng lên rroif mà chẳng ai bít mà trả lời

a) Để A nhận giá trị nguyên thì: \(-n-7⋮n-2\)

\(\Rightarrow-n-7+n-2⋮n-2\)

\(\Rightarrow-9⋮n-2\Rightarrow n-2\inƯ\left(-9\right)\)

Mà \(Ư\left(-9\right)=\left\{-1;-9;1;9\right\}\)

\(\Rightarrow n-2\in\left\{-1;-9;1;9\right\}\)

\(\Rightarrow n\in\left\{1;-7;3;11\right\}\)

b) Để B có giá trị nguyên thì :\(n-6⋮n+5\)

\(\Rightarrow n-6-\left(n+5\right)⋮n+5\)

\(\Rightarrow n-6-n-5⋮n+5\)

\(\Rightarrow-11⋮n+5\Rightarrow n+5\inƯ\left(-11\right)\)

Mà \(Ư\left(-11\right)=\left\{-11;-1;1;11\right\}\)

\(\Rightarrow n+5\in\left\{-1;-11;1;11\right\}\)

\(\Rightarrow n\in\left\{-6;-16;-4;6\right\}\)

(Mấy dạng này bạn cứ làm sao để bỏ n là được)

13 tháng 2 2020

Cảm ơn bạn .Mình sẽ

19 tháng 8 2020

a) \(A=\left(a-2b+c\right)-\left(a-2b-c\right)\)

\(A=a-2b+c-a+2b+c=2c\)

b) \(B=\left(-x-y+3\right)-\left(-x+2-y\right)\)

\(B=-x-y+3+x-2+y=1\)

c) \(C=2\left(3a+b-1\right)-3\left(2a+b-2\right)\)

\(C=6a+2b-2-6a-3b+6=4-b\)

19 tháng 8 2020

a. \(A=\left(a-2b+c\right)-\left(a-2b-c\right)=a-2b+c-a+2b+c=0\) 

b. \(B=\left(-x-y+3\right)-\left(-x+2-y\right)=-x-y+3+x-2+y=1\)

c. \(C=2\left(3a+b-1\right)-3\left(2a+b-2\right)=6a+2b-2-6b-3b+6=4-3b\)

2 tháng 8 2019

Biết a=b=c=d 

Thay vào M

Ta có: 

\(M=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=4.\frac{2a-a}{a+a}=4.\frac{a}{2a}=4.\frac{1}{2}=2\)

7 tháng 4 2020

Bài 1

a) \(\frac{5}{6}=\frac{x-1}{x}\)

<=> 5x=6x-6

<=> 5x-6x=-6

<=> -11x=-6

<=> \(x=\frac{6}{11}\)

b)c)d) nhân chéo làm tương tự

1 tháng 3 2020

Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

Tương tự

\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)

\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)

\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)

Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)

Tương tự

\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)

\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)

Vậy \(1< M< 2\)nên M không là số tự nhiên