Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- A không phải là số chí phương. Vì từ đề ta có:
abc+bca+cab=(a.100+b.10+c)+(b.100+c.10+a)+(c.100+a.10+b)= a.111+b.111+c.111=111.(a+b+c)
->A không phải là số chính phương vì 111 nhân với số trừ 111 thì không có số chính phương.
chiu roi
ban oi
tk nhe@@@@@@@@@@@@@
xin do
ai tk minh minh tk lai
Chứng minh rằng tổng sau không là số chính phương
A = abc + bca + cab
abc và bca và cab là số tự nhiên
A = abc + bca + cab
=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>A = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> A = 111a + 111b + 111c
=> A= 111( a+b+c )= 37 . 3( a+b + c)
giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le\) a + b + c \(\le\) 27
A = abc + bca + cab không phải là số chính phương
Ta có:\(A=\overline{abc}+\overline{cab}+\overline{bca}=a.100+b.10+c+c.100+a.10+b+b.100+c.10+a\)
\(=a.111+b.111+c.111=\left(a+b+c\right)111\)
Để A là số chính phương thì khi phân tích A ra số nguyên tố các thừa số đều mũ chẵn
Mà \(A=\left(a+b+c\right)111=\left(a+b+c\right).3.37\)
=>Để A là số chính phương thì a+b+c=3.37<=>a+b+c=111,mà \(a+b+c\le9\left(a;b;c\inℕ\right)\)
Vậy không có a;b;c thỏa mãn hay A không là số chính phương
S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương
lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0