K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

Vì a=b=c nên:

A=ab^2c.(-1/2bc^2)+(3/2abc).(-bc)^2

A=a^4.(-1/2a^3)+(3/2a^3).a^4

A=a^4.(-1/2a^3+3/2abc)

A=a^4.a^3=a^7

Thay a=1 vào A ta có: A=(-1)^7=-1

Ta có: \(A=ab^2c\cdot\left(-\dfrac{1}{2}bc^2\right)+\dfrac{3}{2}abc\cdot\left(-bc\right)^2\)

\(=\dfrac{-1}{2}ab^3c^3+\dfrac{3}{2}abc\cdot b^2c^2\)

\(=\dfrac{-1}{2}ab^3c^3+\dfrac{3}{2}ab^3c^3\)

\(=ab^3c^3\)

Thay a=-1; b=-1; c=-1 vào A, ta được:

\(A=-1\cdot\left(-1\right)^3\cdot\left(-1\right)^3=-1\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

Ta có:

$2a^2+2b^2+2c^2=2ab+2bc+2ac$

$\Rightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Rightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Ta thấy: $(a-b)^2\geq 0; (b-c)^2\geq 0; (c-a)^2\geq 0$ với mọi $a,b,c$

Do đó để tổng của chúng bằng $0$ thì:

$(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

Khi đó: \(N=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=(1+1)(1+1)(1+1)=8\)

10 tháng 5 2017

Nếu 3 đa thức cùng mang giá trị âm thì tích của chúng sẽ là 1 số âm 

mà khi ta nhân 3 đa thức với nhau nhận kết quả là 1/2 a^10.b^6 .c^6  > 0

vì thế 3 đa thức không thể cùng nhận giá trị âm

9 tháng 3 2018

\(A+B+C=a^2bc+ab^2c+abc^2\)

\(A+B+C=abc\left(a+b+c\right)=abc.1=abc\)

Vậy: \(A+B+C=abc\left(đpcm\right)\)

16 tháng 12 2016

mau cái nha

 

1 tháng 3 2019

\(B=\frac{1}{4}\left(a^2b^2\right)2ab\) tại a = 1, b = |2|

\(B=\frac{1}{4}\left(1^2.2^2\right)2.1.2\)

\(B=\frac{1}{4}.4.2.1.2\)

\(B=4\)