Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, b là 2 số tự nhiên liên tiếp nên a hoặc b sẽ là một số chẵn hoặc một số lẻ. => a=2k, b=2k+1, c=2k(2k+1)
P=a^2+b^2+c^2
P=(2k)^2+(2k+1)^2+[(2k)(2k+1)]^2
P=4k^2+4k^2+1+2.2k+4k^2(2k+1)^2
P=4k^2+4k^2+4k+4k^2.(4k^2+1+4k)+1
mà 4k^2+4k^2+4k+4k^2.(4k^2+1+4k) chia hết cho 2
=> P ko chia hết cho 2.
P là số chính fuong lẻ
a, b là 2 số tự nhiên liên tiếp nên b=a+1. Thay vào p ta có:
p = a2+(a+1)2+a2*(a+1)2
p= a2+a2+2a+1+a2(a2+2a+1)
p=a4+ 2a3+3a2+2a+1
p=(a4+2a3+a) +2 (a2+a) +1
p=(a2+a)2+2 (a2+a) +1
p=[(a2+a) + 1]2
Vậy p là số chính phương.
Nếu a lẻ thì (a2+a) chẵn => p lẻ
Nếu a chẵn thì (a2+a) chẵn => p lẻ
Vậy p là số chính phương lẻ.
2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x
=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3
2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y
x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)
2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25
(b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100
Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5
Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)
Ta có: \(a^2\) = \(\left(5k+4\right)^2\)
= 25\(k^2\) + 40k + 16
= 25\(k^2\) + 40k + 15 + 1
= 5(5\(k^2\)+ 8k +3) +1
Ta có: 5 ⋮ 5 nên 5(5\(k^2\) + 8k + 3) ⋮ 5
Vậy \(a^2\) = (5k+4)25k+42 chia cho 5 dư 1. (đpcm)