Cho A = (a – b) – (c – a) + (- a + b + c)

      ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

\(A=\left(a-b\right)-\left(c-a\right)+\left(-a+b+c\right)\)

\(A=a-b-c+a-a+b+c=a\left(1\right)\)

\(B=-\left(b-c\right)+\left(b-c+a\right)\)

\(B=-b+c+b-c+a=a\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow A=B=a\)

19 tháng 10 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/b = b/c = c/a = (a+b+c)/(a+b+c) = 1 ( vì a+b+c khác 0)

vì a/b =1 nên a=b

vì b/c =1 nên b=c

vì c/a = 1 nên c=a

=> a=b=c

20 tháng 8 2016

Câu 1:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1.\)(T/c dãy tỷ số bằng nhau)

Suy ra:

\(\frac{a}{b}=1\Rightarrow a=b\)

\(\frac{b}{c}=1\Rightarrow b=c\)

\(\frac{c}{d}=1\Rightarrow c=d\)

\(\frac{d}{a}=1\Rightarrow d=a\)

Theo t/c bắc cầu => \(a=b=c=d\)

Câu 2: Do \(a=b=c=d\) nên

\(M=\frac{a+2a}{a}+\frac{b+2b}{b}+\frac{c+2c}{c}+\frac{d+2d}{d}=3+3+3+3=12\)

20 tháng 8 2016

Ta dễ dàng thấy b= d2

a2 = c

b= ac

Từ đó thấy a = b = c = d

Từ đó ta có M = 3 + 3 +  3 + 3 = 12

21 tháng 7 2016

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

=>3a=b+c+d

    3b=a+c+d

    3c=a+b+d

    3d=a+b+c

=>a=b=c=d

=>\(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

21 tháng 7 2016

4

26 tháng 8 2021

\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)

Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)

Ta có : \(a=b.k\)  

            \(b=c.k\)

\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)

\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)

Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)

Hok tốt~

16 tháng 7 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;b=dk\)

\(\frac{a-c}{a+c}=\frac{b-d}{b+d}\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\Rightarrow\frac{bk-dk}{1.b-d.1}=\frac{bk+dk}{1.b+1.d}\Rightarrow\frac{k.\left(b-d\right)}{1\left(b-d\right)}=\frac{k\left(b+d\right)}{1.\left(b+d\right)}\Rightarrow k=k\left(đpcm\right)\)

Vậy \(\frac{a-c}{a+c}=\frac{b-d}{b+d}\)

b) \(\frac{a}{a+c}=\frac{b}{b+d}\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\Rightarrow\frac{bk}{b}=\frac{bk+dk}{1.b+1.d}\Rightarrow k=k\left(đpcm\right)\)

Vậy \(\frac{a}{a+c}=\frac{b}{b+d}\)

29 tháng 5 2017

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\b=a\end{cases}}\Rightarrow a=b=c\)

29 tháng 5 2017

Cái phần ngoặc nhọn ấy bn làm ko hỉu mấy

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

           \(\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\left(1\right)\\b=c\left(2\right)\\c=a\left(3\right)\end{cases}}\)

              Từ (1) , ( 2 ) và (3) ta được: a=b=c

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

28 tháng 11 2019

Câu hỏi của Đoàn Thị Như Thảo - Toán lớp 7 - Học toán với OnlineMath

14 tháng 6 2019

Mình lộn chữ "c" sửa thành chữ "n" nha

ta có:a<b
1-a+n/b+n =(b+n-a-n)/a+n=>(b-a)/a+n
Vì (b-a)/a < (b-a)/a+n nên a/b ( b>0) > a+n/b+n
Làm tương tự Vs a>b nha!