Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/b = b/c = c/a = (a+b+c)/(a+b+c) = 1 ( vì a+b+c khác 0)
vì a/b =1 nên a=b
vì b/c =1 nên b=c
vì c/a = 1 nên c=a
=> a=b=c
Câu 1:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1.\)(T/c dãy tỷ số bằng nhau)
Suy ra:
\(\frac{a}{b}=1\Rightarrow a=b\)
\(\frac{b}{c}=1\Rightarrow b=c\)
\(\frac{c}{d}=1\Rightarrow c=d\)
\(\frac{d}{a}=1\Rightarrow d=a\)
Theo t/c bắc cầu => \(a=b=c=d\)
Câu 2: Do \(a=b=c=d\) nên
\(M=\frac{a+2a}{a}+\frac{b+2b}{b}+\frac{c+2c}{c}+\frac{d+2d}{d}=3+3+3+3=12\)
Ta dễ dàng thấy b2 = d2
a2 = c2
b2 = ac
Từ đó thấy a = b = c = d
Từ đó ta có M = 3 + 3 + 3 + 3 = 12
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
=>3a=b+c+d
3b=a+c+d
3c=a+b+d
3d=a+b+c
=>a=b=c=d
=>\(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)
Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)
Ta có : \(a=b.k\)
\(b=c.k\)
\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)
\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)
Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)
Hok tốt~
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;b=dk\)
\(\frac{a-c}{a+c}=\frac{b-d}{b+d}\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\Rightarrow\frac{bk-dk}{1.b-d.1}=\frac{bk+dk}{1.b+1.d}\Rightarrow\frac{k.\left(b-d\right)}{1\left(b-d\right)}=\frac{k\left(b+d\right)}{1.\left(b+d\right)}\Rightarrow k=k\left(đpcm\right)\)
Vậy \(\frac{a-c}{a+c}=\frac{b-d}{b+d}\)
b) \(\frac{a}{a+c}=\frac{b}{b+d}\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\Rightarrow\frac{bk}{b}=\frac{bk+dk}{1.b+1.d}\Rightarrow k=k\left(đpcm\right)\)
Vậy \(\frac{a}{a+c}=\frac{b}{b+d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\b=a\end{cases}}\Rightarrow a=b=c\)
Cái phần ngoặc nhọn ấy bn làm ko hỉu mấy
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\left(1\right)\\b=c\left(2\right)\\c=a\left(3\right)\end{cases}}\)
Từ (1) , ( 2 ) và (3) ta được: a=b=c
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
Câu hỏi của Đoàn Thị Như Thảo - Toán lớp 7 - Học toán với OnlineMath
ta có:a<b
1-a+n/b+n =(b+n-a-n)/a+n=>(b-a)/a+n
Vì (b-a)/a < (b-a)/a+n nên a/b ( b>0) > a+n/b+n
Làm tương tự Vs a>b nha!
\(A=\left(a-b\right)-\left(c-a\right)+\left(-a+b+c\right)\)
\(A=a-b-c+a-a+b+c=a\left(1\right)\)
\(B=-\left(b-c\right)+\left(b-c+a\right)\)
\(B=-b+c+b-c+a=a\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A=B=a\)