K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

b, gọi ước chung lớn nhất của 2n+2011 và 2n+2013 là d

ta có 2n+2011 chia hết cho d

2n+2013 chia hết cho d

=> ( 2n+2013 ) - ( 2n+ 2011) chia hết cho d

=> 2 chia hết cho d

=> d= ( 1 hoặc 2)

mà 2n+ 2011 là số lẻ ( ko chia hết cho 2)

=> d=1

vậy 2n+ 2011 và 2n+2013 nguyên tố cùng nhau

14 tháng 12 2016

a, gọi ước chung lớn nhất ......là d

7n+ 10 chia hết cho d

=> 5(7n+10) chia hết cho d

=> 35n+50 chia hết cho d

tương tự 5n+7 chia hết cho d

=> 7( 5n+7) chia hết cho d

=> 35n + 49 chia hết cho d

=> ( 35n+50)-(35n+49) chia hết cho d

=> 1 chia hết cho d

=> d= 1

vậy ..... nguyên tố cùng nhau

Gọi ƯCLN(7n+10;5n+7)=a

Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a

=> 35n+50 chia hết cho a (1)

            5n+7 chia hết cho a => 7(5n+7) chia hết cho a

=> 35n + 49 chia hết cho a (2)

Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a

=> 1 chia hết cho a

=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau 

tick ủng hộ nha

 

7 tháng 8 2016

a. Gọi d là ƯC của 7n+10 và 5n+7 ta có:

7n+10 chia hết cho d suy ra 35n+50 chia hết cho d

5n+7 chia hết cho d suy ra 35n+49 chia hết d

suy ra (35n+50)-(35n+49) chia hết d

suy ra 1 chia hết d

suy ra d=1

suy ra 7n+10 và 5n+7 nguyên tố cùng nhau

b tương tự như a

ƯC(2n+3,4n+8)=d

2n+3 chia hết d 

4n+8 chia hết d suy ra 2n+4 chia hết d

suy ra (2n+4)-(2n+3) chia hết d

suy ra 1 chia hết d 

suy ra d=1

 suy ra 2n+3 và 4n+8 nguyên tố cùng nhau

7 tháng 8 2016

a) 7n+10 và 5n+7

Gọi d là ƯCLN ( 7n+10,5n+7)

=> 7n+10 chia hết cho d

     5n+7 chia hết cho d

=> 5(7n+10) chia hết cho d

    7(5n+7) chia hết cho d

=> 5(7n+10) - 7(5n+7) chia hết cho d

=> 35n + 50 - 35n+49 chia hết cho d

=>1 chia hết cho d

=> d=1

Vậy 7n+10 và 5n+7 nguyên tố cùng nhau.

Mik mới giải ra câu a) không biết có đúng không.

Các bạn giải câu b) cho mik nhé ^_^

3 tháng 1 2021

                                                          Bài giải

a, Ta có : \(8n+8=4\left(n+2\right)\text{ }⋮\text{ }4\text{ với }\forall n\in N\)

\(\Rightarrow\)Không có số tự nhiên n nào thỏa mãn đề bài

b, Gọi \(ƯCLN\left(5n+7\text{ ; }7n+10\right)=d\)

\(\Leftrightarrow\hept{\begin{cases}\text{ }7n+10\text{ }⋮\text{ }d\\5n+7\text{ }⋮\text{ }d\end{cases}}\text{ }\Rightarrow\hept{\begin{cases}\text{ }5\left(7n+10\right)\text{ }⋮\text{ }d\text{ }\\7\left(5n+7\right)\text{ }⋮\text{ }d\end{cases}}\Rightarrow\hept{\begin{cases}\text{ }35n+50\text{ }⋮\text{ }d\\35n+49\text{ }\text{ }\text{ }⋮\text{ }d\end{cases}}\)

\(\Rightarrow\text{ }\left(35n+50\right)-\left(35n+49\right)\text{ }⋮\text{ }d\)

\(\Rightarrow\text{ }1\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }d=1\)

\(\Rightarrow\text{ }5n+7\text{ và }7n+10\) là 2 số nguyên tố cùng nhau

12 tháng 8 2020

a) n + 5 chia hết cho n - 2

=> ( n - 2 ) + 7 chia hết cho n - 2

=> 7 chia hết cho n - 2

=> n - 2 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }

n-2-7-117
n-51310

Vậy n = { -5 ; 1 ; 3 ; 10 )

b) Gọi d là ƯCLN(7n + 10 ; 5n + 7)

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)

\(\Rightarrow35n+50-35n-49⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

=> ƯCLN(7n + 10 ; 5n + 7) = 1

=> 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau với mọi n thuộc N ( đpcm ) 

12 tháng 8 2020

Bài làm:

a) \(\frac{n+5}{n-2}=\frac{\left(n-2\right)+7}{n-2}=1+\frac{7}{n-2}\)

Để \(\left(n+5\right)⋮\left(n-2\right)\) thì \(\frac{7}{n-2}\inℤ\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow n\in\left\{-5;1;3;9\right\}\)

b) Gọi \(\left(7n+10;5n+7\right)=d\)

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(7n+10\right)⋮d\\2\left(5n+7\right)⋮d\end{cases}}\)

\(\Rightarrow14n+20-\left(10n+14\right)⋮d\)

\(\Leftrightarrow4n+6⋮d\) , mà \(5n+7⋮d\)

\(\Rightarrow5n+7-\left(4n+6\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\pm1\)

=> 7n+10 và 5n+7 nguyên tố cùng nhau

=> đpcm

27 tháng 9 2015

Gọi WCLN(7n+10; 5n+7) là d. Ta có:

7n+10 chia hết cho d => 35n+50 chia hết co d

5n+7 chia hết cho d => 35n+49 chia hết cho d

=> 35n+50-(35n+49) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

=> d = 1

=> WCLN(7n+10; 5n+7) = 1

=> 7n+10 và 5n+7 nguyên tố cùng nhau (đpcm)

30 tháng 5 2017

a) Gọi d là ƯCLN(7n+1;5n+7) => 7n+10 chia hết cho d; 5n+7 chia hết cho d

=>5(7n+10) chia hết cho d; 7(5n+7) chia hết cho d

=>35n+50 chia hết cho d; 35n+49 chia hết cho d

=>(35n+50)-(35n+49) chia hết cho d

=>1 chia hết cho d

=>d=1

=>7n+10 và 5n+7 nguyên tố cùng nhau với mọi n

30 tháng 5 2017

b) Gọi m là ƯCLN(2n+3;4n+8) => 2n+3 chia hết cho m;4n+8 chia hết cho m

=>2(2n+3) chia hết cho m => 4n+6 chia hết cho m

=>(4n+8)-(4n+6) chia hết cho m 

=>2 chia hết cho m

=>m thuộc {1;2}

2n+3 là số lẻ => 2n+3 không chia hết cho 2 => m khác 2

=>m=1

=>đpcm