Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3)7+7^2+7^3+...+7^100
=>7C-C=7^101-7
=>C=\(\frac{7^{101}-7}{6}\)
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và a2b2 = 2.(-5) =(-1).10 =c2d2
P(x) = (9x2 – 9x – 10)(9x2 + 9x – 10) + 24x2
Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:
Q(y) = y(y + 10x) = 24x2
Tìm m.n = 24x2 và m + n = 10x ta chọn được m = 6x , n = 4x
Ta được: Q(y) = y2 + 10xy + 24x2
= (y + 6x)(y + 4x)
Do đó: P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).
\(A=7^2+7^3+7^4+7^5=7\left(7+7^2+7^3+7^4\right)\)chia hết cho 7 (1)
\(A=7^2+7^3+7^4+7^5=\left(7^2+7^3\right)+\left(7^4+7^5\right)=7^2\left(1+7\right)+7^4\left(1+7\right)\)
\(=\left(7^2+7^4\right)8\)chia hết cho 2 (2)
\(A=7^2+7^3+7^4+7^5=7^2\left(1+7+7^2+7^3\right)=7^2.400\)chia hết cho 5 (3)
từ (1);(2);(3)\(\Rightarrowđpcm\)
1) A = 72 + 73 + 74 + 75 chia hết cho 7 vì mỗi số hạng của A đều chia hết cho 7 (tính chất chia hết của một tổng)
2) (mình hổng biết)
3) A = 72 + 73 + 74 + 75 chia hết cho 2 vì là tổng của 4 số lẻ ( Lẻ + Lẻ + Lẻ + Lẻ = Chẵn chia hết cho 2)
A=(7^1+7^2)+(7^3+7^4)+....+(7^99+7^100)
A=7x(1+7)+7^3x(1+7)+....+7^99x(1+7)
A=7x8+7^3x8+.....+7^99x8
A=(7+7^3+....,..+7^99)x8
Vì 7+7^3+.....+7^99 là số tự nhiên
Nên (7+7^3+....+7^99)x8 chia hết cho 8
Vậy 7^1+7^2+7^3+7^4+......+7^99+7^100 chia hết cho 8
k cho mk nhé