Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)
Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$
$=7.57+7^4.57+...+7^{118}.57$
$=57(7+7^4+...+7^{118})\vdots 57$
Ta có đpcm.
Ta xét biểu thức \(A_1=7+7^2+7^3\) \(=7\left(1+7+7^2\right)\) \(=57.7⋮57\)
\(A_2=7^4+7^5+7^6\) \(=7^4\left(1+7+7^2\right)\) \(=57.7^4⋮57\)
...
\(A_{40}=7^{118}+7^{119}+7^{120}\) \(=7^{118}\left(1+7+7^2\right)⋮57\)
Vậy \(A=\sum\limits^{40}_{i=1}A_i\) đương nhiên chia hết cho 57 (đpcm)
a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9
Vậy ab - ba chia hết cho9
ab+cd+eg = 10a+b+d+10e+g
=10(a+c+e)+b+d+g chia hết cho 11 thì
a+c+e chia hết 11
b+d+g chia hết 11
a. => 7A=7.(7+72+73+...+72016)
7A=72+73+74+...+72017
=> 7A-A=(72+73+74+...+72017)-(7+72+73+...+72016)
=> 6A=72017-7
=> A=\(\frac{7^{2017}-7}{6}\).
b. A=(7+72)+(73+74)+...+(72015+72016)
=7.(1+7)+73.(1+7)+...+72015.(1+7)
=7.8+73.8+...+72015.8
=8.(7+73+...+72015) chia hết cho 8
=> A chia hết cho 8.
c. A=(7+72+73)+(74+75+76)+...+(72014+72015+72016)
=7.(1+7+72)+74.(1+7+72)+...+72014.(1+7+72)
=7.57+74.57+...+72014.57
=57.(7+74+...+72014) chia hết cho 57
=> A chia hết cho 57.