Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65
50 + 51 + 52 + ... + 52013
= 1 + 5 + 52 + ... + 52013
= ( 1 + 5 + 52 + 53 ) + ( 54 + 55 + 56 + 57 ) + ... + ( 52010 + 52011 + 52012 + 52013 )
= 156 + 54( 1 + 5 + 52 + 53 ) + ... + 52010( 1 + 5 + 52 + 53 )
= 156.1 + 54.156 + ... + 52010.156
= 156( 1 + 54 + ... + 52010 )
Vì 156 chia hết cho 4 => 156( 1 + 54 + ... + 52010 )
hay 50 + 51 + 52 + ... + 52013 chia hết cho 4 ( đpcm )
60 + 61 + 62 + ... + 62013
= 1 + 6 + 62 + ... + 62013
= ( 1 + 6 + 62 + 63 + 64 ) + ( 65 + 66 + 67 + 68 + 69 ) + ... + ( 62009 + 62010 + 62011 + 62012 + 62013 )
= 1555 + 65( 1 + 6 + 62 + 63 + 64 ) + ... + 62009( 1 + 6 + 62 + 63 + 64 )
= 1555.1 + 65.1555 + ... + 62009.1555
= 1555( 1 + 65 + ... + 62009 )
Vì 1555 chia hết cho 5 => 1555( 1 + 65 + ... + 62009 )
hay 60 + 61 + 62 + ... + 62013 chia hết cho 5 ( đpcm )
\(A=10^{2012}+10^{2011}+10^{2009}+8\)
\(A=10^{2009}\left(10^3+10^2+10^1+8\right)\)
\(A=10^{2009}.1111+8\)
\(A=11110.....8\)( 2009 c/s 0 )
Không có số chính phương nào có tận cùng là 8
\(\Rightarrow\) A không phải là số chính phương.
A có ba chữ số tận cùng là 008 nên \(A⋮8\) ( 1 )
A có tổng các chữ số là 9 nên \(A⋮3\) ( 2 )
Từ (1)(2) kết hợp với ( 3,8 )=1 \(\Rightarrow A⋮24\)
a) Với 7n là số lẻ với n \(\in\) N*
Mà tổng A có 8 số hạng đều là số lẻ
Do đó : A là số chẵn
b) Ta có
A = ( 7 + 73 ) + ( 72 + 74 ) + ( 75 + 77 ) + ( 76 + 78 )
= 7 ( 1 + 72 ) + 72 ( 1 + 72 ) + 75 ( 1 + 72 ) + 76 ( 1 + 72 )
= 7 . 50 + 72 . 50 + 75 . 50 + 76 . 50
= 50 ( 7 + 72 + 75 + 76 )
Vì 50 \(\vdots\) 5 => A \(\vdots\) 5
c) Ta có :
A = 50 ( 7 + 72 + 75 + 76 ) = \(\overline{....0}\)
Vậy A có tận cùng là 0
A=1+20121+20122+....+201272⇒2012A=2012+20122+....+201273⇒2011A=201273−1⇒A=201273−12011
=> A<B
M = 2012 + 20122 + 20123 + ... + 20122010
M = (2012 + 20122) + (20123 + 20124) + ... + (20122009 + 20122010)
M = 2012(1 + 2012) + 20123( 1 +2012) + ... + 20122009(1 + 2012)
M = 2012 . 2013 + 20123. 2013 + ... + 20122009 . 2013
M = 2013(2012 + 20123 + ... + 20122009)
=> M chia hết cho 2013 (đpcm)