Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7+72 + 73 +....+ 7100
= (7+72) + (73 + 74)+.....+(799+7100)
= 7(1+7) + 73(1+7)+.......+799(1+7)
= 8(7+72+73+.....+ 799) chia hết cho 8
A = 7 + 72 + 73 + ... + 799 + 7100
A = ( 7 + 72 ) + ( 73 + 74 ) + ... + ( 799 + 7100 )
A = ( 1 + 7 ) . 7 + ( 1 + 7 ) . 73 + ... + ( 1 + 7 ) . 799
A = 8 . 7 + 8 . 73 + ... + 8 . 799
A = 8 . ( 7 + 73 + ... + 799 )
=> A chia hết cho 8 (đpcm)
a) D = 7+73+75+...+71999
=> 72D= 73+75+...+71999+72001
=> 72D-D=(73+75+...+71999+72001)-( 7+73+75+...+71999)
=> 72D-D hay D(72-1)=48D=72001-7
=> D=(72001-7)/48
a, D = 7+73+75+.....+71999
72D = 73+75+77+.....+72001
48D = 72D - D = 72001-7
=> D = \(\frac{7^{2001}-7}{48}\)
b, D = 7+73+75+.....+71999
D = (7+73)+(75+77)+.....+(71997+71999)
D = 1(7+73)+74(7+73)+.....+71996(7+73)
D = 1.350 + 74.350+.....+71996.350
D = 350(1+74+......+71996) chia hết cho 350
=> D chia hết cho 35 ( Vì 350 chia hết cho 35)
1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)
= (5+52+..........+52003).126 ->S chia hết cho 126
2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)
= (7+...............+71997).50-> chia hết cho 5
= 7(1+72+.......+71998) -> chia hết cho 7
-> chia hết cho 35
Ta có :
(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)
(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)
\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)
<=> A chia hết cho 5 (2)
Mà (5;7)=1 (3)
Từ (1) ; (2) và 3
=> A chia hết cho 5.7 = 35
x+ 7 \(⋮\)x+5
=> x+5 \(⋮\)x+5
=> ( x+7)-( x+5) \(⋮\)x+5
=> x+7 - x-5 \(⋮\)x+5
=> 2 \(⋮\)x+5
=> x+ 5 \(\in\)Ư(2)= {1; 2; -1; -2}
=> x \(\in\){ -4; -3; -6: -7}
Vậy...
+)Ta có:x+5\(⋮\)x+5(1)
+)Theo bài ta có:x+7\(⋮\)x+5(2)
+)Từ (1) và (2)
=>(x+7)-(x+5)\(⋮\)x+5
=>x+7-x-5\(⋮\)x+5
=>2\(⋮\)x+5
=>x+5\(\in\)Ư(2)={\(\pm\)1;\(\pm\)2}
=>x\(\in\){-6;-4;-7;-3}
Vậy x\(\in\) {-6;-4;-7;-3}
Chúc bn học tốt
Ta có:
\(3^{1999}=3^{2000}:3\)
\(=\left(3^2\right)^{1000}:3\)
\(=9^{1000}:3\)
\(=.....:3=.....7\)
\(7^{1997}=7^{1996}.7\)
\(=\left(7^2\right)^{998}.7\)
\(=49^{998}.7\)
\(=.....1.7=.....7\)
Do đó: \(3^{1999}-7^{1997}=.....7-.....7=.....0\)
Vì \(.....0\) chia hết cho \(5.\)
\(\Rightarrow3^{1999}-7^{1997}\) chia hết cho \(5.\) ( đpcm )
ta có : 31999 - 71997 = (34)499 . 33 - (74)499 . 7
= (...1) . (...7) - (...1) . 7
= (...7) - (...7)
= (...0) chia hết cho 5
Vậy 31999 - 71997 chia hết cho 5
a có : số bị trừ có tận cùng là 7
số trừ có tận cùng là 7
Vì : $7-7=0\Rightarrow3^{1999}-7^{1997}⋮5$
Vậy ...
ta có:
a+5b chia hết cho 7
=> 10(a+5b) chia hết cho 7
=> 10a+50b chia hết cho 7
=> 10a+b+49b chia hết cho 7
=> 10a+b chia hết cho 7 (vì 49b chia hết cho 7)
vậy đpcm
sorry mình ko viết dc kí hiệu nhưng k cho mình nha!!
\(A=7^1+7^3+7^5+7^7+...+7^{1997}+7^{1999}\)
\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)
\(A=\left(7+7^3\right)+\left[\left(7+7^3\right)\cdot7^4\right]+...+\left[\left(7+7^3\right)\cdot7^{1996}\right]\)
\(A=\left(7+7^3\right)\cdot\left(1+7^4+...+7^{1996}\right)\)
\(A=350\cdot\left(1+7^4+...+7^{1996}\right)\)
Vì \(350⋮35\)nên \(A⋮35\left(đpcm\right)\)