K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(=5^n.5^2+26.5^n+8.8^{2n}\)
\(=5^n.\left(25+26\right)+8.8^{2n}\)
\(=51.5^n+8.8^{2n}\).
Xét số dư của \(8^{2n}\) cho 59.
Ta có \(8^{2n}=64^n\). Do 64 : 59 dư 5 nên \(8^{2n}:59\)\(5^n\).
Vì vậy \(51.5^n+8.8^{2n}\) chia 59 dư:
\(51.5^n+8.5^n\) \(=5^n\left(51+8\right)=59.51^n\).
Do \(59.51^n\) chia hết cho 59 nên \(A=5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59.

28 tháng 6 2021

a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)

\(=5^n.51+8.64^n\)

Có \(64\equiv5\) (mod 59)

\(\Rightarrow64^n\equiv5^n\) (mod 59)

\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)

mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59) 

\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)

b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)

Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)

Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)

\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)

\(\Rightarrow16^n-9^n-7⋮3\) (II)

Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8) 

\(\Rightarrow9^n+7⋮8\)  mà \(16^n=2^n.8^n⋮8\) 

\(\Rightarrow16^n-9^n-7⋮8\) (III)

Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)

Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\) 

\(\Rightarrow\) Đpcm

28 tháng 6 2021

a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n

=5n.51+8.64n=5n.51+8.64n

Có 64≡564≡5 (mod 59)

⇒64n≡5n⇒64n≡5n (mod 59)

⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)

mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59) 

26 tháng 10 2023

\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)

26 tháng 10 2023

\(3^{5n+2}+3^{5n+1}-3^{5n}(n\in N^*)\\=3^{5n}\cdot3^2+3^{5n}\cdot3-3^{5n}\\=3^{5n}\cdot(3^2+3-1)\\=3^{5n}\cdot11\)

Vì \(3^{5n}\cdot11\vdots11\) 

nên biểu thức \(3^{5n+2}+3^{5n+1}-3^{5n}\vdots11\)

24 tháng 10 2023

1. b3+b= 3                                       

(b3+b)=3                            

b.(3+1)=3

b. 4= 3

b=\(\dfrac{3}{4}\)

a3+a= 3                                       b3

(a3+a)=3                            

a.(3+1)=3

a. 4= 3

a=\(\dfrac{3}{4}\)

2

20 tháng 8 2018

Chúng minh rằng : 

a) ( 5n )^100 chia hết cho 125 

( 5n )^100 = ( 5n )^2 .50

= ( 5n . 5 . 5)^50

= ( 5 . 5 . 5 . n )^50 

= ( 125n )^50 chia hết cho 125

b) 8^8 + 2^20 chia hết cho 17

8^8 + 2^20

= ( 2^3 )^8 + 2^20

= 2^24 + 2^20 

= 2^20 . 2^4 + 2^20 . 1

= 2^20 . 16 + 2^20 . 1

= 2^20 . ( 16 + 1 )

= 2^20 . 17 chia hết cho 17 

27 tháng 10 2023

a) Sửa đề:

A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ chia hết cho 21 (n ∈ ℕ)

Ta có:

A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ

= 5ⁿ.(5² + 5 + 1)

= 5.31 ⋮ 31

Vậy A ⋮ 31

b) Sửa đề: B = 3ⁿ⁺² + 3ⁿ - 2ⁿ⁺²  - 2ⁿ

= 3ⁿ(3² + 1) - 2ⁿ.(2² + 1)

= 3.10 + 2ⁿ⁻¹.2.5

= 10.(3 + 2ⁿ⁻¹) ⋮ 10

Vậy B ⋮ 10

Câu 1: 

\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)

\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)

\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)

Câu 2: 

\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)

\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)

\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)